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Introduction 
The International Physics Olympiad is an annual international physics 
competition for pre-university students.  Teams of five from each 
participating nation attend, and recently over 60 countries have taken 
part.  Each nation has its own methods for selecting its team members.  
In Britain, this is by means of a series of written and practical exams.  
The question paper for the first round is circulated to all secondary 
schools. 

Once the team has been chosen, it is necessary for its members to 
broaden their horizons.  The syllabus for the International Physics 
Olympiad is larger than that of the British A2-level, and indeed forms a 
convenient stepping-stone to first year undergraduate work.  For this 
reason, training is provided to help the British team bridge the gap. 

The British Olympiad Committee recognizes the need for teaching 
material to help candidates prepare for the international competition.  
Furthermore, this material ought to have greater potential in the hands of 
students who wish to develop their physics, even if they have no desire 
to take part in the examinations. 

It is my hope that these notes make a start in providing for this need. 

A.C. Machacek, 2001 

 

2006: Revision, update of rigid body dynamics, addition of Bernouilli’s 
equation and addition of questions. 

2017: Revision to add a chapter of Ray Optics. 

 

About the author:  Anton Machacek competed in the International 
Physics Olympiad in 1993, and has been involved in training the British 
team in most of the subsequent years.  He served on the academic 
committee for the International Physics Olympiad in Leicester in 2000.  
He is Assistant Head at Westcliff High School for Boys having previously 
led the Physics department at the Royal Grammar School in High 
Wycombe.  He is a contributor to the Isaac Physics project at the 
University of Cambridge. 
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1 Linear Mechanics 

1.1 Motion in a Line 

1.1.1 The Fundamentals 

1.1.1.1 Kinematics 

Mechanics is all about motion.  We start with the simplest kind of motion 
– the motion of small dots or particles.  Such a particle is described 
completely by its mass (the amount of stuff it contains) and its position.  
There is no internal structure to worry about, and as for rotation, even if it 
tried it, no-one would see.  The most convenient way of labelling the 
position is with a vector r showing its position with respect to some 
convenient agreed stationary point. 

If the particle is moving, its position will change.  If its speed and 
direction are steady, then we can write its position after time t as 

  r = s + ut, 

where s is the starting point (the position of the particle at t=0) and u as 
the change in position each second – otherwise known as the velocity.  If 
the velocity is not constant, then we can’t measure it by seeing how far 
the object goes in one second, since the velocity will have changed by 
then.  Rather, we say that u how far the object would go in one second if 
the speed or direction remained unchanged that long.  In practice, if the 
motion remains constant for some small time (called t), and during this 
small time, the particle’s position changes r, then the change in position 
if this were maintained for a whole second (otherwise known as the 
velocity) is 

  u = r  number of t periods in one second = r  t. 

Similarly, if the velocity is changing, we define the acceleration as the 
change in velocity each second (if the rate of change of acceleration 
were constant.  Accordingly, our equation for acceleration becomes 

  a = u  t. 

Hopefully, it is apparent that as the motion becomes more complex, and 
the t periods need to be made shorter and shorter, we end up with the 
differential equations linking position, velocity and acceleration: 

  








dt
dt

d

dt
dt

d

auua

urru
. 
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1.1.1.2 Dynamics 

Now we have a way of describing motion, we need a way of predicting or 
explaining the motion which occurs – changing our question from ‘what 
is happening?’ to ‘why?’ and our explanation is going to involve the 
activity of forces.  What do forces do to an object? 

The first essential point is that forces are only needed to change (not 
maintain) motion.  In other words – unless there is a change of velocity, 
no force is needed.  But how much force is needed?  

Newton made the assumption (which we find to be helpful and true) that 
the force causes a change in what he called the ‘motion’ –we now call it 
momentum.  Suppose an object has mass m and velocity u (we shall 
clarify what we mean by mass later) – then its momentum is equal to 
mu, and is frequently referred to by physicists by the letter p.  Newton’s 
second law states that if a constant force F is applied to an object for a 
short time t, then the change in the momentum is given by F t.  In 
differential notation d(mu)/dt = F. 

In the case of a single object of constant mass it follows that 

  
 

a
uu

F m
dt

d
m

dt

md
 . 

His next assumption tells us more about forces and allows us to define 
‘mass’ properly.  Imagine two bricks are being pulled together by a 
strong spring. The brick on the left is being pulled to the right, the brick 
on the right is being pulled to the left.   

 

 

Newton assumed that the force pulling the left brick rightwards is equal 
and opposite to the force pulling the right brick leftwards.  To use more 
mathematical notation, if the force on block no.1 caused by block no.2 is 
called f12, then f12=f21.  If this were not the case, then if we looked at 
the bricks together as a whole object, the two internal forces would not 
cancel out, and there would be some ‘left over’ force which could 
accelerate the whole object.1  

It makes sense that if the bricks are identical then they will accelerate 
together at the same rate.  But what if they are not?  This is where 
Newton’s second law is helpful.  If the resultant force on an object of 

                                            

1 If you want to prove that this is ridiculous, try lifting a large bucket while standing in it. 
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constant mass equals its mass times its acceleration, and if the two 
forces are equal and opposite, we say 

  

1

2

2

1

2211

2112

m

m

a

a

mm






aa

ff

, 

and so the ‘more massive’ block accelerates less.  This is the definition 
of mass.  Using this equation, the mass of any object can be measured 
with respect to a standard kilogram.  If a mystery mass experiences an 
acceleration of 2m/s2 while pushing a standard kilogram in the absence 
of other forces, and at the same time the kilogram experiences an 
acceleration of 4m/s2 the other way, then the mystery mass must be 2kg. 

When we have a group of objects, we have the option of applying 
Newton’s law to the objects individually or together.  If we take a large 
group of objects, we find that the total force 

   
i i

iii m
dt

d
uFFtotal  

changes the total momentum (just like the individual forces change the 
individual momenta).  Note the simplification, though – there are no fij in 
the equation.  This is because fij + fji = 0, so when we add up the forces, 
the internal forces sum to zero, and the total momentum is only affected 
by the external forces Fi. 

1.1.1.3 Energy and Power 

Work is done (or energy is transferred) when a force moves something.  
The amount of work done (or amount of energy transformed) is given by 
the dot product of the force and the distance moved. 

  W = F ● r = F r cos  (1) 

where  is the angle between the force vector F and the distance vector 
r.  This means that if the force is perpendicular to the distance, there is 
no work done, no energy is transferred, and no fuel supply is needed. 

If the force is constant in time, then equation (1) is all very well and 
good, however if the force is changing, we need to break the motion up 
into little parts, so that the force is more or less constant for each part.  
We may then write, more generally, 

  W = F  r = F r cos  (1a) 

Two useful differential equations can be formed from here. 
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1.1.1.4 Virtual Work 

From equation (1a) it is clear that if the motion is in the direction of the 
force applied to the object (i.e. =0), then 

  F
r

W





, 

where W is the work done on the object.  Accordingly, we can calculate 
the force on an object if we know the energy change involved in moving 
it.  Let’s give an example. 

An electron (with charge q) is forced through a resistor (of length L) by a 
battery of voltage V.  As it goes through, it must lose energy qV, since V 
is the energy loss per coulomb of charge passing through the resistor.  
Therefore, assuming that the force on the electron is constant (which we 
assume by the symmetry of the situation), then the force must be given 
by W / d = qV / L.  If we define the electric field strength to be the force 
per coulomb of charge (F/q), then it follows that the electric field strength 
E = V/L. 

So far, we have ignored the sign of F.  It can not have escaped your 
attention that things generally fall downwards – in the direction of 
decreasing [gravitational] energy.  In equations (1) and (1a), we used the 
vector F to represent the externally applied force we use to drag the 
object along.  In the case of lifting a hodful of bricks to the top of a wall, 
this force will be directed upwards.  If we are interested in the force of 
gravity G acting on the object (whether we drag it or not), this will be in 
the opposite direction.  Therefore F = G, and 

  W =  G  r, (1b) 

  
r

W
G




 . 

In other words, if an object can lose potential energy by moving from one 
place to another, there will always be a force trying to push it in this 
direction. 

1.1.1.5 Power 

Another useful equation can be derived if we differentiate (1a) with 
respect to time.  The rate of ‘working’ is the power P, and so  

  
t

r

t

δr

t

W
P










 F
F

. 

As we let the time period tend to zero, r/t becomes the velocity, and so 
we have: 
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  P = F ● u = F u cos  (2) 

where  is now best thought of as the angle between force and direction 
of motion.  Again we see that if the force is perpendicular to the direction 
of motion, no power is needed.  This makes sense: think of a bike going 
round a corner at constant speed.  A force is needed to turn the corner - 
that’s why you lean into the bend, so that a component of your weight 
does the job.  However no work is done – you don’t need to pedal any 
harder, and your speed (and hence kinetic energy) does not change. 

Equation (2) is also useful for working out the amount of fuel needed if a 
working force is to be maintained.  Suppose a car engine is combating a 
friction force of 200N, and the car is travelling at a steady 30m/s.  The 
engine power will be 200N × 30m/s = 6 kW. 

Our equation can also be used to derive the kinetic energy.  Think of 
starting the object from rest, and calculating the work needed to get it 
going at speed U.  The force, causing the acceleration, will be F=ma.  
The work done is given by 

  
  2

2
1

0
2

2
1 mUmvdm

dt
dt

d
mdtdtPW

U







vv

v
v

vF
 (3) 

although care needs to be taken justifying the integration stage in the 
multi-dimensional case.2 

1.1.2 Changing Masses 
The application of Newton’s Laws to mechanics problems should pose 
you no trouble at all.  However there are a couple of extra considerations 
which are worth thinking about, and which don’t often get much attention 
at school. 

The first situation we’ll consider is when the mass of a moving object 
changes.  In practice the mass of any self-propelling object will change 
as it uses up its fuel, and for accurate calculations we need to take this 
into account.  There are two cases when this must be considered to get 
the answer even roughly right – jet aeroplanes and rockets.  In the case 
of rockets, the fuel probably makes up 90% of the mass, so it must not 
be ignored. 

                                            

2 The proof is interesting.  It turns out that dvv cosdvvdvv  since 

the change in speed dv is equal to |dv| cos where dv (note the bold 
type) is the vector giving the change in velocity. 
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Changing mass makes the physics interesting, because you need to 
think more carefully about Newton’s second law.  There are two ways of 
stating it – either 

(i) Force on an object is equal to the rate of change of its momentum 
(ii) Force on an object is equal to mass × acceleration 

The first says ummaumumdtmudF   )( , whereas the second 
simply states F=ma.  Clearly they can’t both be correct, since they are 
different.  Which is right?  The first: which was actually the way Newton 
stated it in the first place!  The good old F=ma will still work – but you 
have to break the rocket into parts (say grams of fuel) – so that the 
rocket loses parts, but each part does not lose mass – and then apply 
F=ma to each individual part.  However if you want to apply a law of 
motion to the rocket as a whole, you have to use the more complicated 
form of equation. 

This may be the first time that you encounter the fact that momentum is 
a more ‘friendly’ and fundamental quantity to work with mathematically 
than force.  We shall see this in a more extreme form when looking at 
special relativity. 

Let us now try and calculate how a rocket works.  We’ll ignore gravity 
and resistive forces to start with, and see how fast a rocket will go after it 
has burnt some fuel.  To work this out we need to know two things – the 
exhaust speed of the combustion gas (w), which is always measured 
relative to the rocket; and the rate at which the motor burns fuel (in kg/s), 
which we shall call . 

We’ll think about one part of the motion, when the rocket starts with 
mass (M+m), burns mass m of fuel, where m is very small, and in doing 
so increases its speed from U to U+u.  This is shown below in the 
diagram. 

Before After 

M+m M m 

U U+u U-w 
 

Notice that the velocity of the burnt fuel is U-w, since w is the speed at 
which the combustion gas leaves the rocket (backwards), and we need 
to take the rocket speed U into account to find out how fast it is going 
relative to the ground. 

Conservation of momentum tells us that 
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  (M+m) U = m (U-w) + M (U+u) 

so  m w = M u. (4) 

We can integrate this expression for u to evaluate the total change in 
speed after burning a large amount of fuel.  We treat the u (change in U) 
as an infinitesimal calculus dU, and the m as a calculus –dM.  Notice the 
minus sign – clearly the rocket must lose mass as fuel is burnt.  Equation 
(4) now tells us 

  dU
M

dM
w   (5) 

This can be integrated to give 

     















 

final

initial
initialfinal M

M
wUU

UMw

dUdM
M

w

ln

ln

1

 (6) 

This formula (6) is interesting because it tells us that in the absence of 
other forces, the gain in rocket speed depends only on the fraction of 
rocket mass that is fuel, and the exhaust speed. 

In this calculation, we have ignored other forces.  This is not a good idea 
if we want to work out the motion at blast off, since the Earth’s gravity 
plays a major role!  In order to take this, or other forces, into account, we 
need to calculate the thrust force of the rocket engine – a task we have 
avoided so far. 

The thrust can be calculated by applying F=ma to the (fixed mass) rocket 
M in our original calculation (4).  The acceleration is given by dU/t = u/t, 
where t is the time taken to burn mass m of fuel.  The thrust is  

  w
t

m
w

t

mw

Mt

mw
M

t

u
MT   (7) 

given by the product of the exhaust speed and the rate of burning fuel.  
For a rocket of total mass M to take off vertically, T must be greater than 
the rocket’s weight Mg.  Therefore for lift off to occur at all we must have 

  Mgw  . (8) 

This explains why ‘heavy’ hydrocarbon fuels are nearly always used for 
the first stage of liquid fuel rockets.  In the later stages, where absolute 
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thrust is less important, hydrogen is used as it has a better ‘kick per 
kilogram’ because of its higher exhaust speed. 

1.1.3 Fictitious Forces 
Fictitious forces do not exist.  So why do we need to give them a 
moment’s thought?  Well, sometimes they make our life easier.  Let’s 
have a couple of examples. 

1.1.3.1 Centrifugal Force 

You may have travelled in one of those fairground rides in which 
everyone stands against the inside of the curved wall of a cylinder, which 
then rotates about its axis.  After a while, the floor drops out – and yet 
you don’t fall, because you’re “stuck to the side”.  How does this work? 

There are two ways of thinking about this.  The first is to look at the 
situation from the stationary perspective of a friend on the ground.  She 
sees you rotating, and knows that a centripetal force is needed to keep 
you going round – a force pointing towards the centre of the cylinder.  
This force is provided by the wall, and pushes you inwards.  You feel this 
strongly if you’re the rider!  And by Newton’s third law it is equally true 
that you are pushing outwards on the wall, and this is why you feel like 
you are being ‘thrown out’. 

While this approach is correct, sometimes it makes the maths easier if 
you analyse the situation from the perspective of the rider.  Then you 
don’t need to worry about the rotation!  However in order to get the 
working right you have to include an outwards force – to balance the 
inward push of the wall. If this were not done, the force from the walls 
would throw you into the central space. The outward force is called the 
centrifugal force, and is our first example of a fictitious force.  It doesn’t 
really exist, unless you are working in a rotating reference frame, and 
insist that you are at rest. 

The difference between the two viewpoints is that in one case the inward 
push of the wall provides the centripetal acceleration. In the other it 
opposes the centrifugal force - giving zero resultant, and keeping the 
rider still. Therefore the formulae used to calculate centripetal force also 
give the correct magnitude for centrifugal force.  The two differences are: 

(i) Centrifugal force acts outwards, centripetal force acts inwards 

(ii) Centrifugal force is only considered if you are assuming that the 
cylinder is at rest (in the cylinder’s reference frame).  On the other hand, 
you only have centripetal accelerations if you do treat the cylinder as a 
moving object and work in the reference frame of a stationary observer. 

This example also shows that fictitious forces generally act in the 
opposite direction to the acceleration that is being ‘ignored’.  Here the 
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acceleration is an inward centripetal acceleration, and the fictitious 
centrifugal force points outward. 

1.1.3.2 Inertial Force 

The second example we will look at is the motion of a lift (elevator) 
passenger.  You know that you ‘feel heavier’ when the lift accelerates 
upwards, and ‘feel lighter’ when it accelerates downwards.  Therefore if 
you want to simplify your maths by treating the lift car as a stationary 
box, you must include an extra downward force when the lift is actually 
accelerating upwards, and vice-versa.  This fictitious force is called the 
inertial force.  We see again that it acts in the opposite direction to the 
acceleration we are trying to ignore. 

We shall look more closely at this situation, as it is much clearer 
mathematically. 

Suppose we want to analyse the motion of a ball, say, thrown in the air 
in a lift car while it is accelerating upwards with acceleration A.  We use 
the vector a to represent the acceleration of the ball as a stationary 
observer would measure it, and a’ to represent the acceleration as 
measured by someone in the lift.  Therefore, a = A + a’.  Now this ball 
won’t simply travel in a straight line, because forces act on it.  Suppose 
the force on the ball is F.  We want to know what force F’ is needed to 
get the right motion if we assume the lift to be at rest. 

Newton’s second law tells us that F=ma, if m is the mass of the ball.  
Therefore F=m(A+a’), and so F-mA = ma’.  Now the force F’ must be 
the force needed to give the ball acceleration a’ (the motion relative to 
the lift car), and therefore F’=ma’.  Combining these equations gives 

  F’ = F – mA. (9) 

In other words, if working in the reference frame of the lift, you need to 
include not only the forces which are really acting on the ball (like 
gravity), but also an extra force –mA.  This extra force is the inertial 
force. 

Let us continue this line of thought a little further.  Suppose the only 
force on the ball was gravity.  Therefore F=mg.  Notice that  

  F’ = F – mA = m (g-A) (10) 

and therefore if g=A (that is, the lift is falling like a stone, because some 
nasty person has cut the cable), F’=0.  In other words, the ball behaves 
as if no force (not even gravity) were acting on it, at least from the point 
of view of the unfortunate lift passengers.  This is why weightlessness is 
experienced in free fall. 
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A similar argument can be used to explain the weightlessness of 
astronauts in orbiting spacecraft.  As stationary observer (or a physics 
teacher) would say that there is only one force on the astronauts – 
gravity, and that this is just the right size to provide the centripetal force.  
The astronaut’s perspective is a little different.  He (or she) experiences 
two forces – gravity, and the fictitious centrifugal force.  These two are 
equal and opposite, and as a result they add to zero, and so the 
astronaut feels just as weightless as the doomed lift passengers in the 
last paragraph. 

1.2 Going Orbital 

1.2.1 We have the potential 
We shall now spend a bit of time reviewing gravity.  This is a frequent 
topic of Olympiad questions, and is another area in which you should be 
able to do well with your A-level knowledge. 

Gravitation causes all objects to attract all other objects.  To simplify 
matters, we start with two small compact masses.  The size of the force 
of attraction is best described by the equation 

  
2R

GMm
Fr   (11) 

Here G is the Gravitational constant (6.673×10-11 Nm2/kg2), M is the 
mass of one object (at the origin of coordinates), and m is the mass of 
the other. The equation gives the force experienced by the mass m.  
Notice the ‘r’ subscript and the minus sign – the force is radial, and 
directed inwards toward the origin (where the mass M is). 

It is possible to work out how much work is needed to get the mass m as 
far away from M as possible.  We use integration 

  
R

GMm

r

GMm
dr

r

GMm
drF

RRR

r

R









 2
dxF . 

Notice the use of rF  in the second stage.  In order to separate the 
masses we use a force F which acts in opposition to the gravitational 
attraction Fr.  The equation gives the amount of work done by this force 
as it pulls the masses apart. 

We usually define the zero of potential energy to be when the masses 
have nothing to do with each other (because they are so far away).  
Accordingly, the potential energy of the masses m and M is given by  

  
R

GMm
RE )( . (12) 
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That is, RGMm  joules below zero energy. Notice that   

  
dR

RdE
RFr

)(
)(  . (13) 

This is a consequence of the definition of work as   dxFW , and is 

generally true.  It is useful because it tells us that a forces always point in 
the direction of decreasing energy. 

The potential energy depends on the mass of both objects as well as the 
position.  The gravitational potential V(R) is defined as the energy per 
unit mass of the second object, and is given by 

   
R

GM

m

mRE
RV

m




),(
lim

0

. (14) 

Accordingly, the potential is a function only of position.  The zero limit on 
the mass m is needed (in theory) to prevent the small mass disturbing 
the field.  In practice this will not happen if the masses are fixed in 
position.  To see the consequences of breaking this rule, think about 
measuring the Earth’s gravitational field close to the Moon.  If we do this 
by measuring the force experienced by a 1kg mass, we will be fine.  If 
we do it by measuring the force experienced by a 1028kg planet put in 
place for the job, we will radically change the motion of Earth and Moon, 
and thus affect the measurement. 

In a similar way, we evaluate the gravitational field strength as the force 
per kilogram of mass.  Writing the field strength as g gives 

  
2R

MG
g   (15) 

and equation (13) may be rewritten in terms of field and potential as  

  
dR

dV
Rg )( . (16) 

1.2.2 Orbital tricks 
There is a useful shortcut when doing problems about orbits.  Suppose 
that an object of mass m is orbiting the centre of co-ordinates, and 
experiences an attractive force n

r ArF  , where A is some constant.  
Therefore n=-2 for gravity, and we would have n=+1 for motion of a 
particle attached to a spring (the other end fixed at the origin). 
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If the object is performing circular orbits, the centripetal acceleration will 
be Ru 2 where R is the radius of the orbit.  This is provided by the 
attractive force mentioned, and so: 

  

22

12

2







n

n
r

ARmu

ARF
R

mu

 (17) 

Now the potential energy E(R) is such that n
r ARFdRdE  , so  

  
1

)(
1






n

AR
RE

n

 (18) 

if we take the usual convention that E(R) is zero when the force is zero.  
Combining equations (17) and (18) gives 

  )(
2

1

2

2

RE
nmu




  (19) 

so that  

  Kinetic Energy × 2 = Potential Energy × (n+1). (20) 

This tells us that for circular gravitational orbits (where n=2), the 
potential energy is twice as large as the kinetic energy, and is negative.  
For elliptical orbits, the equation still holds: but now in terms of the 
average3 kinetic and potential energies.  Equation (20) will not hold 
instantaneously at all times for non-circular orbits. 

1.2.3 Kepler’s Laws 
The motion of the planets in the Solar system was observed extensively 
and accurately during the Renaissance, and Kepler formulated three 
“laws” to describe what the astronomers saw.  For the Olympiad, you 
won’t need to be able to derive these laws from the equations of gravity, 
but you will need to know them, and use them (without proof). 

1. All planets orbit the Sun in elliptical orbits, with the Sun at one 
focus. 

                                            

3 By average, we refer to the mean energy in time.  In other words, if T is the orbital period, 

the average of A is given by 
T

T dttA
0

1 )( . 
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2. The area traced out by the radius of an orbit in one second is the 
same for a planet, whatever stage of its orbit it is in.  This is 
another way of saying that its angular momentum is constant, and 
we shall be looking at this in Chapter 3. 

3. The time period of the orbit is related to the [time mean] average 

radius of the orbit: 2
3

RT  .  It is not too difficult to show that this 

is true for circular orbits, but it is also true for elliptic ones. 

1.2.4 Large Masses 
In our work so far, we have assumed that all masses are very small in 
comparison to the distances between them.  However, this is not always 
the case, as you will often be working with planets, and they are large!  
However there are two useful facts about large spheres and spherical 
shells.  A spherical shell is a shape, like the skin of a balloon, which is 
bounded by two concentric spheres of different radius. 

1. The gravitational field experienced at a point outside a sphere or 
spherical shell is the same as if all the mass of the shape were 
concentrated at its centre. 

2. A spherical shell has no gravitational effect on an object inside it. 

These rules only hold if the sphere or shell is of uniform density (strictly – 
if the density has spherical symmetry). 

Therefore let us work out the gravitational force experienced by a miner 
down a very very very deep hole, who is half way to the centre of the 
Earth.  We can ignore the mass above him, and therefore only count the 
bit below him.  This is half the radius of the Earth, and therefore has one 
eighth of its mass (assuming the Earth has uniform density – which it 
doesn’t).  Therefore the M in equation (11) has been reduced by a factor 
of eight. Also the miner is twice as close to the centre (R has halved), 
and therefore by the inverse-square law, we would expect each kilogram 
of Earth to attract him four times as strongly.  Combining the factors of 
1/8 and 4, we arrive at the conclusion that he experiences a gravitational 
field ½ that at the Earth’s surface, that is 4.9 N/kg. 

1.3 Fluids – when things get sticky 
Questions about fluids are really classical mechanics questions.  You 
can tackle them without any detailed knowledge of fluid mechanics.  
There are a few points you need to remember or learn, and that is what 
this section contains.  Perfect gases are also fluids, but we will deal with 
them in chapter 5 – “Hot Physics”. 

1.3.1 Floating and ... the opposite 
The most important thing to remember is Archimedes’ Principle, which 
states that: 
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When an object is immersed in a fluid (liquid or gas), it will 
experience an upwards force equal to the weight of fluid 
displaced. 

By “weight of fluid displaced” we mean the weight of the fluid that would 
have been there if the object was not in position.  This upward force 
(sometimes called the buoyant upthrust) will be equal to  

  Force = Weight of fluid displaced 

  = g × Mass of fluid displaced 

  = g × Density of fluid × Volume of fluid displaced (21) 

For an object that is completely submerged, the “volume of fluid 
displaced” is the volume of the object.   

For an object that is only partly submerged (like an iceberg or ship), the 
“volume of fluid displaced” is the volume of the object below the 
“waterline”. 

This allows us to find out what will float, and what will sink.  If an object is 
completely submerged, it will have two forces acting on it.  Its weight, 
which pulls downwards, and the buoyant upthrust, which pulls upwards. 

Fluid 
Density  

Volume V 
Mass M 

Upthrust =  V g 

Weight = M g 

Object floats if: 
 
 V > M 
 > M/V 

 

Therefore, things float if their overall density (total mass / total volume) is 
less than the density of the fluid.  Notice that the overall density may not 
be equal to the actual density of the material.  To give an example a ship 
is made of metal, but contains air, and is therefore able to float because 
its overall density is reduced by the air, and is therefore lower than the 
density of water.  Puncture the hull, and the air is no longer held in place.  
Therefore the density of the ship = the density of the steel, and the ship 
sinks. 

For an object that is floating on the surface of a fluid (like a ship on the 
ocean), the upthrust and weight must be equal – otherwise it would rise 
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or fall.  From Archimedes’ principle, the weight of water displaced must 
equal the total weight of the object. 

There is a “brain-teaser” question like this: A boat is floating in the 
middle of a lake, and the amount of water in the lake is fixed.  The boat 
is carrying a large rock.  The rock is lifted out of the boat, and dropped 
into the lake.  Will the level of water in the lake go up or down? 

Answer: Level goes down – while the rock was in the boat (and therefore 
floating) its weight of water was being displaced.  When it was dropped 
into the depths, its volume of water was displaced.  Now the density of 
rock is higher than that of water, so the water level in the lake was higher 
in the first case. 

1.3.2 Under Pressure 
What is the pressure in a fluid?  This must depend on how deep you are, 
because the deeper you are, the greater weight of fluid you are 
supporting.  We can think of the pressure (=Force/Area) as the weight of 
a square prism of fluid above a horizontal square metre marked out in 
the depths. 

  Pressure = Weight of fluid over 1m2 square 
  = g × Density × Volume of fluid over 1m2 
 = g × Density × Depth × Cross sectional area of fluid (1m2) 

 
Pressure = g × Density × Depth (22) 

Of course, this equation assumes that there is nothing pushing down on 
the surface of the liquid!  If there is, then this must be added in too.  
Therefore pressure 10m under the surface of the sea = atmospheric 
pressure + weight of a 10m high column of water. 

It is wise to take a bit of caution, though, since pressures are often given 
relative to atmospheric pressure (i.e. 2MPa more than atmospheric) – 
and you need to keep your wits about you to spot whether pressures are 
relative (vacuum = -100 kPa) or absolute (vacuum = 0 Pa). 

1.3.3 Continuity 
Continuity means conservatism!  Some things just don’t change – like 
energy, momentum, and amount of stuff.  This gives us a useful tool.  
Think about the diagram below, which shows water in a 10cm [diameter] 
pipe being forced into a 5cm pipe. 
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5 cm 10 cm 

 

Water, like most liquids, doesn’t compress much – so it can’t form 
bottlenecks.  The rate of water flow (cubic metres per second) in the big 
pipe must therefore be equal to the rate of water flow in the little pipe.   

You might like to draw an analogy with the current in a series circuit.  
The light bulb has greater resistance than the wire but the current in both 
is the same, because the one feeds the other. 

How can we express this mathematically?  Let us assume that the pipe 
has a cross sectional area A, and the water is going at speed u m/s.  
How much water passes a point in 1 second?  Let us put a marker in the 
water, which moves along with it.  In one second it moves u metres.  
Therefore volume of water passing a point = volume of cylinder of length 
u and cross sectional area A = u A.  Therefore  

 Flow rate (m3/s) = Speed (m/s) × Cross sectional area (m2). (23) 

Now we can go back to our original problem.  The flow rate in both wide 
and narrow pipes must be the same.  So if the larger one has twice the 
diameter, it has four times the cross sectional area; and so its water 
must be travelling four times more slowly. 

1.3.4 Bernoulli’s Equation 
Something odd is going on in that pipe.  As the water squeezes into the 
smaller radius, it speeds up.  That means that its kinetic energy is 
increasing.  Where is it getting the energy from?  The answer is that it 
can only do so if the pressure in the narrower pipe is lower than in the 
wider pipe.  That way there is an unbalanced force on the fluid in the 
cone-shaped part speeding it up.  Lets follow a cubic metre of water 
through the system to work out how far the pressure drops. 

The fluid in the larger pipe pushes the fluid in the cone to the right.  The 
force = pressure  area = PL AL.  A cubic metre of fluid occupies length u 
in the pipe, where u is the speed in m/s.  Accordingly, the work done by 
the fluid in the wider pipe on the fluid in the cone in pushing the cubic 
metre through is PL AL uL = PL, since uL AL = 1m3.  However this cubic 
metre does work PR AR uR = PR in getting out the other side.  Thus the 
net energy gain of the cubic metre is PL  PR, and this must equal the 
change in the cubic metre’s kinetic energy uR

2/2  uL
2/2.  
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1.3.5 The Flow Equation 
Equation (23) is also useful in the context of electric currents, and can be 
adapted into the so-called flow equation.  Let us suppose that the fluid 
contains charged particles.  Suppose that there are N of these particles 
per cubic metre of fluid, and each particle has a charge of q coulombs, 
then: 

  Current = Flow rate of charge (charge / second) 
  = Charge per cubic metre (C/m3)  flow rate (m3/s) 
  = N q  Area  Speed . (24) 

Among other things, this equation shows why the free electrons in a 
semiconducting material travel faster than those in a metal.  If the 
semiconductor is in series with the metal, the current in both must be the 
same.  However, the free charge density N is much smaller in the 
semiconductor, so the speed must be greater to compensate. 

1.4 Questions 
1. Calculate the work done in pedalling a bicycle 300m up a road inclined 

at 5° to the horizontal. 

2. Calculate the power of engine when a locomotive pulls a train of 200 
000kg up a 2° incline at a speed of 30m/s.  Ignore the friction in the 
bearings. + 

3. A trolley can move up and down a track.  It’s potential energy is given by 
V = k x4, where x is the distance of the trolley from the centre of the 
track.  Derive an expression for the force exerted on the trolley at any 
point. + 

4. A ball bearing rests on a ramp fixed to the top of a car which is 
accelerating horizontally.  The position of the ball bearing relative to the 
ramp is used as a measure of the acceleration of the car.  Show that if 
the acceleration is to be proportional to the horizontal distance moved by 
the ball (measured relative to the ramp), then the ramp must be curved 
upwards in the shape of a parabola. ++ 

5. Use arguments similar to equation (3) to prove that the kinetic energy is 
still given by 2

2
1 mu  even when the force which has caused the 

acceleration from rest has not been applied uniformly in a constant 
direction. + 

6. Calculate the final velocity of a rocket 60% of whose launch mass is 
propellant, where the exhaust velocity is 2000m/s.  Repeat the 
calculation for a rocket where the propellant makes up 90% of the launch 
mass.  In both cases neglect gravity. 
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7. Repeat question 6, now assuming that rockets need to move vertically in 
a uniform gravitational field of 9.8N/kg.  Calculate the velocity at MECO 
(main engine cut-off) and the greatest height reached.  Assume that both 
rockets have a mass of 10 000kg on the launch pad, and that the 
propellant is consumed evenly over one minute. ++ 

8. A 70kg woman stands on a set of bathroom scales in an elevator.  
Calculate the reading on the scales when the elevator starts accelerating 
upwards at 2m/s2, when the elevator is going up at a steady speed, and 
when the elevator decelerates at 2m/s2 before coming to a halt at the top 
floor of the building. 

9. The woman in q8 is a juggler.  Describe how she might have to adjust 
her throwing techniques in the elevator as it accelerates and 
decelerates. 

10. Architectural models can not be properly tested for strength because 
they appear to be stronger than the real thing.  To see why, consider a 
half-scale model of a building made out of the same materials.  The 
weight is 1/8 of the real building, but the columns are ¼ the cross 
sectional area.  Accordingly the stress on the columns is half of that in 
the full size building, and accordingly the model can withstand much 
more severe load before collapsing.  To correct for this, a 1:300 
architectural model is put on the end of a centrifuge arm of radius 10m 
which is spun around.  The spinning ‘simulates’ an increased 
gravitational force which allows the model to be accurately tested.  How 
many times will the centrifuge go round each minute? 

11. Consider an incompressible fluid flowing from a 15cm diameter pipe into 
a 5cm diameter pipe.  If the velocity and pressure before the constriction 
are 1m/s and 10 000 N/m2, calculate the velocity and pressure in the 
constricted pipe.  Neglect the effects of viscosity and turbulent flow.  To 
work out the new pressure, remember that the increase in speed 
involves an increase of kinetic energy, and this energy must come from 
somewhere – so there will be a drop in pressure.  

12. Calculate the orbital time period T of a satellite skimming the surface of a 
planet with radius R and made of a material with density .  Calculate 
the orbital speed for an astronaut skimming the surface of a comet with a 
10km radius. 

13. The alcohol percentage in wine can be determined from its density.  A 
very light glass test tube (of cross sectional area 0.5cm2) has 5g of lead 
pellets fixed to the bottom.  You place the tube in the wine, lead first, and 
it floats with the open end of the tube above the surface of the wine.  
You can read the % alcohol from markings on the side of the tube.  
Calculate how far above the lead the 0% and 100% marks should be 
placed.  The density of water is 1.00g/cm3, while that of ethanol is 
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1.98g/cm3.  Where should the 50% line go?  Remember that alcohol 
percentages are always volume percentages. + 
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2 Fast Physics 
Imagine a summer’s day.  You are sunbathing by the side of a busy 
motorway while you wait for a pickup truck to rescue your car, which has 
broken down.  All of a sudden, an irresponsible person throws a used 
drinks can out of their car window, and it heads in your direction.  To 
make things worse, they were speeding at the time.  Ouch. 

The faster the car was going, the more it will hurt when the can hits you.  
This is because the can automatically takes up the speed the car was 
travelling at.  Suppose the irresponsible person could throw the can at 
10mph, and their car is going at 80mph.  The speed of the can, as you 
see it, is 90mph if it was thrown forwards, and 70mph if it was thrown 
backwards. 

To sum this up,  

Velocity as measured by you = Velocity of car + Velocity of throwing  

where we use velocities rather than speeds so that the directionality can 
be taken into account. 

So far, this probably seems very obvious.  However, let’s extend the 
logic a bit further.  Rather than a car, let us have a star, and in place of 
the drinks can, a beam of light.  Many stars travel towards us at high 
speeds, and emit light as they do so.  We can measure the speed of this 
light in a laboratory on Earth, and compare it with the speed of ‘ordinary’ 
light made in a stationary light bulb.  And the worrying thing is that the 
two speeds are the same. 

No matter how hard we try to change it, light always goes at the same 
speed.4  This tells us that although our ideas of adding velocities are 
nice and straightforward, they are also wrong.  In short, there is a 
problem with the Newtonian picture of motion.  This problem is most 
obvious in the case of light, but it also occurs when anything else starts 
travelling very quickly. 

While this is not the way Einstein approached the problem, it is our way 
into one of his early theories – the Special Theory of Relativity – and it is 
part of the Olympiad syllabus. 

Before we go further and talk about what does happen when things go 
fast, please be aware of one thing.  These observations will seem very 
                                            

4 Light does travel different speeds in different materials.  However if the measurement is 
made in the same material (say, air or vacuum) the speed registered will always be the same, 
no matter what we do with the source. 



  Revision April 2017 

 Page 25 

weird if you haven’t read them before.  But don’t dismiss relativity as 
nonsense just because it seems weird – it is a better description of 
Nature than classical mechanics – and as such it demands our respect 
and attention. 

2.1 The Principle of Relativity 
The theory of special relativity, like all theories, is founded on a premise 
or axiom.  This axiom cannot be ‘derived’ – it is a guessed statement, 
which is the starting point for the maths and the philosophy.  In the case 
of special relativity, the axiom must be helpful because its logical 
consequences agree well with experiments. 

This principle, or axiom, can be stated in several ways, but they are 
effectively the same. 

1. There is no method for measuring absolute (non-relative) velocity.  
The absolute speed of a car cannot be measured by any method at 
all.  On the other hand, the speed of the car relative to a speed 
gun, the Earth, or the Sun can all be determined.  

2. Since it can’t be measured – there is no such thing as absolute 
velocity. 

3. The ‘laws of physics’ hold in all non-accelerating laboratories5, 
however ‘fast’ they may be going.  This follows from statement 2, 
since if experiments only worked for one particular laboratory 
speed, that would somehow be a special speed, and absolute 
velocities could be determined relative to it. 

4. Maxwell’s theory of electromagnetism, which predicts the speed of 
light, counts as a law of physics.  Therefore all laboratories will 
agree on the speed of light.  It doesn’t matter where or how the 
light was made, nor how fast the laboratory is moving. 

2.2 High Speed Observations 
In this section we are going to state what relativity predicts, as far as it 
affects simple observations.  Please note that we are not deriving these 
statements from the principles in the last section, although this can be 
done. For the moment just try and understand what the statements 
mean.  That is a hard enough job.  Once you can use them, we shall 
then worry about where they come from.   

                                            

5 We say non-accelerating for a good reason.  If the laboratory were accelerating, you would 
feel the ‘inertial force’, and thus you would be able to measure this acceleration, and indeed 
adjust the laboratory’s motion until it were zero.  However there is no equivalent way of 
measuring absolute speed. 
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2.2.1 Speeding objects look shortened in the direction of 
motion. 

A metre stick comes hurtling towards you at high speed.  With a clever 
arrangement of cameras and timers, you are able to measure its length 
as it passes you.  If the stick’s length is perpendicular to the direction of 
travel, you still measure the length as 1 metre. 

However, if the stick is parallel to its motion, it will seem shorter to you.  
If we call the stick’s actual length (as the stick sees it) as L0, and the 
apparent length (as you measure it) La, we find 

  
2

2

0 1
c

u
LLa  , (1) 

where u is the speed of the metre stick relative to the observer.  The 
object in the square root appears frequently in relativistic work, and to 
make our equations more concise, we write 

  
 21

1

cu
  (2) 

so that equation (1) appears in shorter form as  

  


0L
La  . (3) 

2.2.2 Speeding clocks tick slowly 
A second observation is that if a clock whizzes past you, and you use 
another clever arrangement of timers and cameras to watch it, it will 
appear (to you) to be going slowly. 

We may state this mathematically.  Let T0 be a time interval as 
measured by our (stationary) clock, and let Ta be the time interval as we 
see it measured by the whizzing clock. 

  


0T
Ta    (4) 

2.2.3 Slowing and shrinking go together 
Equations (3) and (4) are consistent – you can’t have one without the 
other.  To see why this is the case, let us suppose that Andrew and Betty 
both have excellent clocks and metre sticks, and they wish to measure 
their relative speed as they pass each other.  They must agree on the 
relative speed.  Andrew times how long it takes Betty to travel along his 
metre stick, and Betty does the same.   
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The question is: how does Andrew settle his mind about Betty’s 
calculation?  As far as he is concerned, she has a short metre stick, and 
a slow clock – how can she possibly get the answer right!  Very easily – 
providing that her clock runs ‘slow’ by the same amount that her metre 
stick is ‘short’6. 

An experimental example may help clarify this.  Muons are charged 
particles that are not stable, and decay with a half-life of 2s.  Because 
they are charged, you can accelerate them to high speeds using a large 
electric field in a particle accelerator.  You can then measure how far 
they travel down a tube before decaying.  Given that ‘the laws of physics 
are the same in all reference frames’, this must mean that muon and 
experimenter agree on the position in the tube at which the muon passes 
away.   

The muon gets much further down the tube than a classical calculation 
would predict, however the reason for this can be explained in two ways: 

 According to the experimenter, the muon is travelling fast, so it has 
a slow clock, and therefore lives longer – so it can get further. 

 According to the muon, it still has a woefully short life, but the tube 
(which is whizzing past) is shorter so it appears to get further along 
in the 2s. 

For the two calculations to agree, the ‘clock slowing’ must be at the 
same rate as the ‘tube shrinkage’. 

2.2.4 Speeding adds weight to the argument 
The most useful observation of them all, as far as the Olympiad syllabus 
is concerned is this: if someone throws a 1kg bag of sugar at you at high 
speed, and you (somehow) manage to measure its mass as it passes, 
you will register more than 1kg. 

If the actual mass of the object is M0, and the apparent mass is Ma, we 
find that 

  0MM a  . (5) 

The actual mass is usually called the ‘rest mass’ – in other words the 
mass as measured by an observer who is at rest with respect to the 
object. 

                                            

6 Note that ‘slow’ and ‘short’ are placed in quotation marks.  Betty’s clock and metre stick are 
not defective – however to Andrew they appear to be. 
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2.2.4.1 The Universal Speed Limit 

This formula has important consequences.  First of all, this is the origin 
of the ‘universal speed limit’, which is a well-known consequence of 
special relativity.  This states that you will never measure the speed of 
an object (relative to you) as being greater than the speed of light. 

Let us pause for a moment to see why.  Suppose the object concerned 
is an electron in a particle accelerator (electrons currently hold the speed 
record on Earth for the fastest humanly accelerated objects).  It starts at 
rest with a mass of about 10-30 kg.   We turn on a large, constant electric 
field, and the electron starts to move relative to the accelerator.  
However, as it gets close to the speed of light, it starts to appear more 
massive.  Therefore since our electric field (hence accelerating force) is 
constant, the electron’s acceleration decreases.  In fact, the acceleration 
tends to zero as time passes, although it never reaches zero exactly 
after a finite time.  We are never able to persuade the electron to break 
the ‘light-barrier’, since when cu  ,  , and the apparent mass 
becomes very large (so the object becomes impossible to accelerate any 
further).  

Please note that this does not mean that faster-than-light speeds can 
never be obtained.  If we accelerate one electron to 0.6c Eastwards, and 
another to 0.6c Westwards, the approach speed of the two electrons is 
clearly superlumic (1.2c) as we measure it with Earth-bound 
speedometers.  However, even in this case we find that the velocity of 
one of the electrons as measured by the other is still less than the speed 
of light.  This is a consequence of our first observation – namely that 
relative velocities do not add in a simple way when the objects are 
moving quickly. 

In fact the approach speed, as the electrons see it, is 0.882c.  If you 
want to perform these calculations, the formula turns out to be 

  
21 cuu

uu
u

BCAB

BCAB
AC 


 , (6) 

where uAB means the velocity of B as measured by A.  Equation (6) only 
applies when all three relative velocities are parallel (or antiparallel). 

2.2.4.2 Newton’s Law of motion 

Our second consequence is that we need to take great care when using 
Newton’s laws.  We need to remember that the correct form of the 
second law is  

  momentum
dt

d
F   (7) 
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Why is care needed?  Look closely for the trap – if the object speeds up, 
its mass will increase.  Therefore the time derivative of the mass needs 
to be included as well as the time derivative of the velocity.  We shall 
postpone further discussion until we have had a better look at 
momentum. 

2.3 Relativistic Quantities 
Now that we have mentioned the business of relativistic mass increase, 
it is time to address the relativistic forms of other quantities. 

2.3.1 Momentum 
Momentum is conserved in relativistic collisions, providing we define it as 
the product of the apparent mass and the velocity. 

  up 0m  (7) 

Notice that when you use momentum conservation in collisions, you will 
have to watch the  factors.  Since these are functions of the speed u, 
they will change if the speed changes. 

2.3.2 Force 
The force on a particle is the time derivative of its momentum.  Therefore 

  





 

dt

d

dt

d
m

dt

d 
 uupF 0 . (8) 

In the case where the speed is not changing,  will stay constant, and 
the equation reduces to the much more straightforward F=m0a.  One 
example is the motion of an electron in a magnetic field. 

2.3.3 Kinetic Energy 
Now that we have an expression for force, we can integrate it with 
respect to distance to obtain the work done in accelerating a particle.  As 
shown in section 1.1.1, this will give the kinetic energy of the particle.  
We obtain the result7 

                                            

7 If you wish to derive this yourself, here are the stages you need.  Firstly, differentiate  with 
respect to u to convince yourself that  

 
  u

c

d

du

c

u

cuc

u

du

d
3

2

2

3

23222 1 





 . 

Using this result, the derivation can be completed (see over the page): 
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    2
01 cmK   . (9) 

This states that the gain in energy of a particle when accelerated is 
equal to the gain in mass × c2.  From this we postulate that any increase 
in energy is accompanied by a change in mass.  The argument works 
backwards too.  When stationary, the particle had mass m0.  Surely 
therefore, it had energy m0c2 when at rest. 

We therefore write the total energy of a particle as  

  2
0

2
0 cmcmKE  . (10) 

2.3.4 A Relativistic Toolkit 
We can derive a very useful relationship from (10), (7) and the definition 
of : 

  

 

42
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2222
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2222
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
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











. (11) 

This is useful, since it relates E and p without involving the nasty  factor.  
Another equation which has no gammas in it can be derived by dividing 
momentum by total energy: 

  
22

0 c

u

cm

um

E

p o 



, (12) 

which is useful if you know the momentum and total energy, and wish to 
know the speed. 

2.3.5 Tackling problems 
If you have to solve a ‘collision’ type problem, avoid using speeds at all 
costs.  If you insist on having speeds in your equations, you will also 
have gammas, and therefore headaches.  So use the momenta and 
energies of the individual particles in your equations instead.  Put more 
bluntly, you should write lots of ‘p’s, and ‘E’s, but no ‘u’s.  Use the 
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conservation laws to help you.  In relativistic work, you can always use 
the conservation of E – even in non-elastic collisions.  The interesting 
thing is that in an inelastic collision, you will find the rest masses greater 
after the collision. 

To obtain the values you want, you need an equation which relates E 
and p, and this is provided by (11).  Notice in particular that the quantity 

    222
cpE    when applied to a group of particles has two things to 

commend it. 

 Firstly, it is only a function of total energy and momentum, and 
therefore will remain the same before and after the collision. 

 Secondly, it is a function of the rest masses (see equation 11) and 
therefore will be the same in all reference frames. 

Finally, if the question asks you for the final speeds, use (12) to calculate 
them from the momenta and energies. 

2.4 The Lorentz Transforms 
The facts outlined above (without the derivations) will give you all the 
information you need to tackle International Olympiad problems.  
However, you may be interested to find out how the observations of 
section 2.2 follow from the general assumptions of section 2.1.  A full 
justification would require a whole book on relativity, however we can 
give a brief introduction to the method here. 

We start by stating a general problem.  Consider two frames of reference 
(or co-ordinate systems) – Andrew’s perspective (t,x,y,z), and Betty’s 
perspective (t’,x’,y’,z’).  We assume that Betty is shooting past Andrew in 
the +x direction at speed v.  Suppose an ‘event’ happens, and Andrew 
measures its co-ordinates.  How do we work out the co-ordinates Betty 
will measure? 

The relationship between the two sets of co-ordinates is called the 
Lorentz transformation, and this can be derived as shown below: 

2.4.1 Derivation of the Lorentz Transformation 
We begin with the assumption that the co-ordinate transforms must be 
linear.  The reason for this can be illustrated by considering length, 
although a similar argument works for time as well.  Suppose that 
Andrew has two measuring sticks joined end to end, one of length L1 
and one of length L2.  He wants to work out how long Betty reckons they 
are.  Suppose the transformation function is T.  Therefore Betty 
measures the first rod as T(L1) and the second as T(L2).  She therefore 
will see that the total length of the rods is T(L1) + T(L2).  This must also 
be equal to T(L1+L2), since L1+L2 is the length of the whole rod 
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according to Andrew.  Since T(L1+L2) = T(L1) +T(L2), the transformation 
function is linear. 

We can now get to work.  Let us consider Betty’s frame of reference to 
be moving in the +x direction at speed v, as measured by Andrew.  Betty 
will therefore see Andrew moving in her –x direction at the same speed.  
To distinguish Betty’s co-ordinates from Andrew’s, we give hers dashes. 

Given the linear nature of the transformation, we write 





























t

x

DC

BA

t

x
 

where A, B, C and D are functions of the relative velocity +v (i.e. Betty’s 
velocity as measured by Andrew). 

There must also be an inverse transformation 
































t

x

AC

BD

dt

x 1
 

where d is the determinant of the first matrix. 

Now this second matrix is in itself a transformation for a relative velocity 
–v, and therefore should be of a very similar form to the first matrix.  We 
find that the only way we can ensure that there is symmetry between the 
two is to make the determinant equal to one (d=1).  We shall therefore 
assume this from here on. 

Next we consider what happens if x’=0.  In other words we are tracing 
out Betty’s motion as Andrew sees it.  Therefore we must have x=vt.  
Using the first matrix, this tells us that B=-vA.  A similar argument on the 
second matrix – where we must have x’=-vt’ where Betty now watches 
Andrew’s motion [x=0], gives –Dv = B = -vA.  Therefore A=D. 

We now have B and D expressed in terms of A, so the next job is to 
work out what C is.  This can be done since we know that the 
determinant AD – BC = 1.  Therefore we find that  

vA

A
C

21
 . 
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Summarizing, our matrix is now expressed totally in terms of the 
unknown variable A.  We may calculate it by remembering that both 
Andrew and Betty will agree on the speed of travel, c, of a ray of light.  
Andrew will express this as x=ct, Betty would say x’=ct’, but both must 
be valid ways of describing the motion.  Therefore 
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This concludes our reasoning, and gives the Lorentz transforms (after a 
little algebra to evaluate C) as: 
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. 

We have not considered any other dimensions here, however the 
transformation here is easy since Andrew and Betty agree on all lengths 
in the y and z directions.  In other words y’=y, z’=z.  This is a necessary 
consequence of the principle of relativity:  the distance between the ends 
of a rod held perpendicular to the direction of motion can be measured 
simultaneously in all frames of reference. If this agreed measurement 
was different to that of an identical rod in a different frame, the observers 
would be able to work out which of them was ‘moving’ and which of them 
was still. 
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2.4.2 Using the Lorentz Transforms 
Having these transforms at our disposal, we can now derive the 
‘shrinking rod’ and ‘slowing clock’ equations. 

Suppose Betty is holding a stick (of length L) parallel to the x-axis.  We 
want to know how long Andrew thinks it is.  To measure it, he will 
measure where the ends of the rod are at a particular moment, and will 
then measure the distance between these points.  Clearly the two 
positions need to be measured simultaneously in his frame of reference, 
and thus t is the same for both measurements.  We know from that Betty 
thinks it has length L, and therefore x’=L.  Using the first of the Lorentz 
equations (the one which links x’, x and t), and remembering that t is the 
same for both measurements,  

  




L

L

xx

apparent 


. 

Similarly we may show how a clock appears to slow down.  Betty is 
carrying the clock, so it is stationary with respect to her, and x’ (her 
measurement of the clock’s position) will therefore be constant.  The 
time interval shown on Betty’s clock is t’, while Andrew’s own clock will 
measure time t.  Here t’ is the time Andrew sees elapsing on Betty’s 
clock, and as such is equal to Tapparent.  Using the fourth Lorentz equation 
(the one with x’, t and t’ in it), and remembering that x’ remains constant, 
we have 

  




T

T

tt

apparent 


. 

2.4.3 Four Vectors 
The Lorentz transforms show you how to work out the relationships 
between the (t,x,y,z) co-ordinates measured in different frames of 
reference.  We describe anything that transforms in the same way as a 
four vector, although strictly speaking we use (ct,x,y,z) so that all the 
components of the vector have the same units.  Three other examples of 
four vectors are: 

 (c, ux, uy, uz) is called the four velocity of an object, and is the 
derivative of (ct, x,y,z) with respect to the proper time .  Proper 
time is the time elapsed as measured in the rest frame of the object 
t=. 

 (mc,px,py,pz)  the momentum four vector.  Here m is equal to m0.  
This must be a four vector since it is equal to the rest mass 
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multiplied by the four velocity (which we already know to be a four 
vector). 

 (/c,kx,ky,kz)  the wave four vector, where  is the angular 
frequency of the wave (=2f), and k is a vector which points in the 
direction the wave is going, and has magnitude 2/.  This can be 
derived from the momentum four vector in the case of a photon, 
since the momentum and total energy of a photon are related by 
E=pc, and the quantum theory states that E=hf=h/2 and 
p=h/=hk/2. 

It also turns out that the dot product of any two four-vectors is ‘frame-
invariant’ – in other words all observers will agree on its value.  The dot 
product of two four-vectors is slightly different to the conventional dot 
product, as shown below: 

       2222,,,,,, ctzyxzyxctzyxct  . 

Notice that we subtract the product of the first elements.   

The dot product of the position four vector with the wave four vector 
gives 

      tkkkczyxct zyx   rk,,,,,, . 

Now this is the phase of the wave, and since all observers must agree 
whether a particular point is a peak, a trough or somewhere in between, 
then the phase must be an invariant quantity.  Accordingly, since 
(ct,x,y,z) makes this invariant when ‘dotted’ with (/c,kx,ky,kz), it follows 
that (/c,kx,ky,kz) must be a four vector too. 

2.5 Questions 
1. Work out the relativistic  factor for speeds of 1%, 50%, 90% and 99% of 

the speed of light. 

2. Work out the speeds needed to give  factors of 1.0, 1.1, 2.0, 10.0. 

3. A muon travels at 90% of the speed of light down a pipe in a particle 
accelerator at a steady speed.  How far would you expect it to travel in 2s 
(a) without taking relativity into account, and (b) taking relativity into 
account?  

4. A particle with rest mass m and momentum p collides with a stationary 
particle of mass M.  The result is a single new particle of rest mass R.  
Calculate R in terms of p and M. 
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5. The principal runway at the spaceport on Arcturus-3 has white squares of 
side length 10m painted on it.  A set of light sensors on the base of a 
spacecraft can take a ‘picture’ of the whole runway at the same time.  
What will the squares look like in the image if the spacecraft is passing the 
runway at a very high speed?  Each sensor takes a picture of the runway 
directly underneath it, so you do not need to take into account the different 
times taken by light to reach the sensors from different parts of the 
runway. 

6. When an electron is accelerated through a voltage V, its kinetic energy is 
given by eV where e is the size of the charge on the electron and is equal 
to 1.61019C.  Taking the mass of the electron to be 9.11031kg, work out 
(a) the kinetic energy and speed of the electron when V=511kV (b) the 
kinetic energy and speed when V=20kV (c) the percentage error in the 
kinetic energy for V=20kV when calculated using the non-relativistic 
equation ½ mu2. 

7. Prove that the kinetic energy of a particle of rest mass m and speed u is 
given by ½ mu2 if the speed is small enough in comparison to the speed of 
light.  Work out the speed at which the non-relativistic calculation would be 
in error by 1%. 

8. Suppose a spacecraft accelerates with constant acceleration a (as 
measured by the spacecraft’s onboard accelerometers).  At t=0 it is at rest 
with respect to a planet.  Work out its speed relative to the planet as a 
function of time (a) as measured by clocks on the spacecraft, and (b) as 
measured by clocks on the planet.  Note that the instantaneous speed of 
the craft relative to the planet will be agreed upon by spacecraft and 
planet. 
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3 Rotation 
Rotational motion is all around us [groan] – from the acts of subatomic 
particles, to the motion of galaxies.  Calculations involving rotations are 
no harder than linear mechanics; however the quantities we shall be 
talking about will be unfamiliar at first.  Having already studied linear 
mechanics, you will be at a tremendous advantage, since we shall find 
that each ‘rule’ in linear mechanics has its rotational equivalent. 

3.1 Angle 
In linear mechanics, the most fundamental measurement is the position 
of the particle.  The equivalent base of all rotational analysis is angle: the 
question “How far has the car moved?” being exchanged for “How far 
has the wheel gone round?” – a question which can only be answered 
by giving an angle.  In mechanics, the radian is used for measuring 
angles.  While you may be more familiar with the degree, the radian has 
many advantages.   

We shall start, then by defining what we mean by a radian.  Consider a 
sector of a circle, as in the diagram; and let the circle have a radius r.  
The length of the arc, that is the curved line in the sector, is clearly 
related to the angle.  If the angle were made twice as large, the arc 
length would also double.   

Can we use arc length to measure the angle?  Not as it stands, since we 
haven’t taken into account the radius of the circle.  Even for a fixed angle 
(say 30°), the arc will be longer on a larger circle.  We therefore define 

the angle (in radians) as the arc length divided by the 
circle radius.  Alternatively you might say that the angle 
in radians is equal to the length of the arc of a unit circle 
(that is a circle of 1m radius) that is cut by the angle. 

Notice one simplification that this brings.  If a wheel, of 
radius R, rolls a distance d along a road, the angle the 
wheel has turned through is given by d/R in radians.  
Were you to calculate the angle in degrees, there would 

be nasty factors of 180 and  in the answer. 

Before getting too involved with radians, however, we must work out a 
conversion factor so that angles in degrees can be expressed in radians.  
To do this, remember that a full circle (360°) has a circumference or arc 
length of 2r.  So 360°=2 rad.  Therefore, 1 radian is equivalent to 
(360/2)° = (180/)°. 

 


r 

Arc length = r if  is 
measured in rad ians 
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3.2 Angular Velocity 
Having discussed angle as the rotational equivalent of position, we now 
turn our attention to speed.  In linear work, speeds are given in metres 
per second – the distance moved in unit time.  For rotation, we speak of 
‘angular velocity’, which tells us how fast something is spinning: how 
many radians it turns through in one second.  The angular velocity can 
also be thought of as the derivative of angle with respect to time, and as 

such is sometimes written as  , however more 
commonly the Greek letter  is used, and the dot 
is avoided.  To check your understanding of this, 
try and show that 1 rpm (revolution per minute) is 
equivalent to /30 rad/s, while one cycle per 
second is equivalent to 2 rad/s. 

Now remember the definition of angle in radians, 
and that the distance moved by a point on the rim 

of a wheel will move a distance s = r when the wheel rotates by an 
angle .  The speed of the point will therefore be given by u = ds/dt = r 
d/dt = r. 

For a point that is not fixed to the wheel, the situation is a little more 
complex.  Suppose that the point has a velocity v, which makes an angle 
 to the radius (as in the figure above).  We then separate v into two 
components, one radial (v cos ) and one rotational (v sin ).  Clearly the 
latter is the only one that contributes to the angular velocity, and 
therefore in this more general case, v sin  = r. 

3.3 Angular acceleration 
It should come as no surprise that the angular acceleration is the time 
derivative of , and represents the change in angular velocity (in rad/s) 
divided by the time taken for the change (in s).  It is measured in rad/s2, 
and denoted by  or   or  .  For an object fastened to the rim of a 
wheel, the ‘actual’ acceleration round the rim (a) will be given by a=du/dt 
= r d/dt = r, while for an object not fastened, we have a sin  = r.8 

3.4 Torque – Angular Force 
Before we can start ‘doing mechanics’ with angles, we need to consider 
the rotational equivalent of force – the amount of twist.  Often a twist can 
be applied to a system by a linear force, and this gives us a ‘way in’ to 
the analysis.  We say that the strength of the twist is called the ‘moment’ 
of the force, and is equal to the size of the force multiplied by the 
distance from pivot to the point where the force acts.  A complication 

                                            

8 Here we are not including the centripetal acceleration which is directed towards the centre of 
the rotation. 

v 


v sin  
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arises if the force is not tangential – clearly a force acting 
along the radius of a wheel will not turn it – and so our 
simple ‘moment’ equation needs modifying.9 

There are two ways of proceeding, and they yield the 
same answer.  Suppose the force F makes an angle  
with the radius.  We can break this down into two 
components – one of magnitude F cos , which is radial 
and does no turning; and the other, tangential 
component (which does contribute to the turning) of 

magnitude F sin .  The moment or torque only includes the relevant 
component, and so the torque is given by C = Fr sin .   

The alternative way of viewing the situation is not to measure the 
distance from the centre to the point at which the force is applied.  
Instead, we draw the force as a long line, and to take the distance as the 
perpendicular distance from force line to centre.  The diagram shows 
that this new distance is given by r sin , and since the force here is 
completely tangential, we may write the moment or torque as the product 
of the full force and this perpendicular distance – i.e. C = F r sin , as 
before. 

3.5 Moment of Inertia – Angular Mass 
Of the three base quantities of motion, namely distance, mass and time, 
only time may be used with impunity in rotational problems.  We now 
have an angular equivalent for distance (namely angle), so the next task 
is to determine an angular equivalent for mass. 

This can be done by analogy with linear mechanics, where the mass of 
an object in kilograms can be determined by pushing an object, and 
calculating the ratio of the applied force to the acceleration it caused: m 
= F/a.  Given that we now have angular equivalents for force and 
acceleration, we can use these to find out the ‘angular mass’. 

Think about a ball of mass m fixed to the rim of a wheel that is 
accelerating with angular acceleration .  We 
shall ignore the mass of the wheel itself for now.  
Now let us push the mass round the wheel with a 
force F.  Therefore we calculate the ‘angular 
mass’ I by 

                                            

9 Why force × radius?  We can use a virtual work argument (as in section 1.1.1.4) to help us.  
Suppose a tangential force F is applied at radius r.  When the object moves round by angle , 
it moves a distance d = r, and the work done by the force = Fd = Fr = Fr × angular force 
× angular distance.  Now since energy must be the same sort of thing with rotational motion 
as linear, the rotational equivalent of force must be Fr. 
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where we have used the fact that the mass m will be the ratio of the 
force F to the linear acceleration a, as dictated by Newton’s Second 
Law.  This formula can also be used for solid objects, however in this 
case, the radius r will be the perpendicular distance from the mass to the 
axis.  The total ‘angular mass’ of the object is calculated by adding up 
the I = m r2 from each of the points it is made from. 

Usually this ‘angular mass’ is called the moment of inertia of the object.  
Notice that it doesn’t just depend on the mass, but also on the distance 
from the point to the centre.  Therefore the moment of inertia of an object 
depends on the axis it is spun round. 

An object may have a high angular inertia, therefore, for two reasons.  
Either it is heavy in its own right; or for a lighter object, the mass is a 
long way from the axis. 

3.6 Angular Momentum 
In linear motion, we make frequent use of the ‘momentum’ of objects.  
The momentum is given by mass × velocity, and changes when a force 
is applied to the object.  The force applied, is in fact the time derivative of 
the momentum (provided that the mass doesn’t change).  Frequent use 
is made of the fact that total momentum is conserved in collisions, 
provided that there is no external force acting. 

It would be useful to find a similar ‘thing’ for angular motion.  The most 
sensible starting guess is to try ‘angular mass’ × angular velocity.  We 
shall call this the angular momentum, and give it the symbol L = I .  Let 
us now investigate how the angular momentum changes when a torque 
is applied.  For the moment, assume that I remains constant. 

  CI
dt

d
II

dt

d

dt

dL
   

Thus we see that, like in linear motion, the time derivative of angular 
momentum is ‘angular force’ or torque.  Two of the important facts that 
stem from this statement are: 

1. If there is no torque C, the angular momentum will not change.  
Notice that radial forces have C = 0, and therefore will not change the 
angular momentum.  This result may seem unimportant – but think of the 
planets in their orbits round the Sun.  The tremendous force exerted on 
them by the Sun’s gravity is radial, and therefore does not change their 
angular momenta even a smidgen.  We can therefore calculate the 
velocity of planets at different parts of their orbits using the fact that the 
angular momentum will remain the same.  This principle also holds when 
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scientists calculate the path of space probes sent out to investigate the 
Solar System. 

2. The calculation above assumes that the moment of inertia I of the 
object remains the same.  This seems sensible, after all, in a linear 
collision, the instantaneous change of a single object’s mass would be 
bizarre10, and therefore we don’t need to guard against the possibility of 
a change in mass when we write F = dp/dt. 

 In the case of angular motion, this situation is different.  The 
moment of inertia can be changed, simply by rearranging the mass of 
the object closer to the axis.  Clearly there is no external torque in doing 
this, so we should expect the angular momentum to stay the same.  But 
if the mass has been moved closer to the axis, I will have got smaller.  
Therefore  must have got bigger.  The object will now be spinning 
faster!  This is what happens when a spinning ice dancer brings in 
her/his arms – and the corresponding increase in revs. per minute is well 
known to ice enthusiasts and TV viewers alike. 

To take an example, suppose that all the masses were moved twice as 
close to the axis.  The value of r would halve, so I would be quartered.  
We should therefore expect  to get four times larger.  This is in fact 
what happens. 

3.7 Angular momentum of a single mass moving in a straight 
line 

If we wished to calculate the angular momentum of a planet in its orbit 
round the Sun, we need to know how L is related to the linear speed v.  
This is what we will now work out. 

Using the same ideas as in figure 2, the velocity v will have both radial 
and ‘rotational’ components.  The rotational component will be equal to v 
sin , while the radial component cannot contribute to the angular 
momentum.  It is the rotational component that corresponds to the speed 
of a mass fixed to the rim of a wheel, and as such is equal to radius × 
angular velocity.  Thus v sin  = r .  So the angular momentum 

   sin
sin2 mvr
r

v
mrIL   

                                            

10 Two cautions.  Firstly, in a rocket, the mass of the rocket does decrease as the burnt fuel is 
chucked out the back, however the total mass does not change.  Therefore F=dp/dt=ma still 
works, we just need to be careful that the force F acts on (and only on) the stuff included in 
the mass m.  A complication does arise when objects start travelling at a good fraction of the 
speed of light – but this is dealt with in the section on Special Relativity. 
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is given by the product of the mass, the radius and the rotational (or 
tangential) component of the velocity.   

For an object on a straight line path, this can also be stated (using figure 
3) as the mass × speed × distance of closest approach to centre. 

3.8 Rotational Kinetic Energy 
Lastly, we come to the calculation of the rotational kinetic energy.  We 
may calculate this by adding up the linear kinetic energies of the parts of 
the object as the spin round the axis.  Notice that in this calculation, as 
the objects are purely rotating, we shall assume  = /2 – i.e. there is no 
radial motion. 

    2
2
122

2
12

2
12

2
1  ImrrmmvK   

We see that the kinetic energy is given by half the angular mass × 
angular velocity squared – which is a direct equivalent with the half mass 
× speed2 of linear motion. 

3.9 Summary of Quantities 
Quantity Symbol Unit Definition Other equations 

Angular velocity  rad/s  = d/dt r  = v sin   

Angular 
acceleration 

 rad/s2  = d/dt r  = a sin  

Torque C N m C = F r sin   

Moment of inertia I kg m2 I = C /  I = m r2 

Angular 
momentum 

L kg m2 /s L = I  L = m v r sin  

Rot. Kinetic 
Energy 

K J K = I 2 / 2 K = ½m (v sin )2 
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3.10 Rotational mechanics with vectors 
This section involves much more advanced mathematics, and you will be 
able to get by in Olympiad problems perfectly well without it.  However, if 
you like vectors and matrices, read on... 

So far we have just considered rotations in one plane – that of the paper.  
In general, of course, rotations can occur about any axis, and to describe 
this three dimensional situation, we use vectors.  With velocity v, 
momentum p and force F, there is an obvious direction – the direction of 
motion, or the direction of the ‘push’.  With rotation, the ‘direction’ is less 
clear.   

Imagine a clock face on this paper, with the minute hand rotating 
clockwise.  What direction do we associate with this motion?  Up 
towards 12 o’clock because the hand sometimes points that way?  
Towards 3 o’clock because the hand sometimes points that way?  Both 
are equally ridiculous.  In fact the only way of choosing a direction that 
will always apply is to assign the rotation ‘direction’ perpendicular to the 
clock face – the direction in which the hands never point. 

This has not resolved our difficulty completely.  Should the arrow point 
upwards out of the paper, or down into it?  After thought we realise that 
one should be used for clockwise and one for anti-clockwise motion, but 
which way?  There is no way of proceeding based on logic – we just 
have to accept a convention.  The custom is to say that for a clockwise 
rotation, the ‘direction’ is down away from us, and for anticlockwise 
rotation, the direction is up towards us. 

Various aides-memoire have been presented for this – my favourite is to 
consider a screw.  When turned clockwise it moves away from you: 
when turned anticlockwise it moves towards you.  For this reason the 

convention is sometimes called the 
‘right hand screw rule’. 

With this convention established, we 
can now use vectors for angular 
velocity , angular momentum L, and 
torque C.  Kinetic energy, like in linear 
motion, is a scalar and therefore needs 
no further attention.  The moment of 
inertia I is more complex, and we shall 

come to that later. 

Let us consider the angular velocity first.  If we already know  and r, 
what is v, assuming that only rotational velocities are allowed?  
Remembering that w must point along the axis of the rotation, we may 
draw the diagram above, which shows that the radius of the circle that 

r sin  r 


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our particle actually traces out is r sin  where  is the angle between r 
and .11  This factor of sin  did not arise before in this way, since our 
motion was restricted to the plane which contained the centre point, and 
thus  = /2 for all our 2-dimensional work.  Therefore the velocity is 
equal to w multiplied by the radius of the circle traced out, i.e. v =  r sin 
.  This may be put on a solid mathematical foundation using the vector 
cross product namely v = ×r.  This is our first vector identity for 
rotational motion. 

By a similar method, we may analyse the acceleration.  We come to the 
corresponding conclusion a =  × r.12 

Next we tackle torque.  Noting our direction convention, and our earlier 
equation C = F r sin , we set C = r × F.  Similarly, from L = (mv) r sin  = 
p r sin , we set L = r × p.   

With these three vector equations we may get to work.  Firstly, notice: 

     CFrarvr0prpvprL  mm
dt

d

dt

d

dt

d

dt

d
 

The time derivative of angular momentum is the torque, as before.  
Notice too that the (v×p) term disappears since p has the same direction 
as v, and the vector cross product of two parallel vectors is zero. 

3.10.1.1 General Moment of Inertia 

Our next task is to work out the moment of inertia.  This can be more 
complex, since it is not a vector.  Previously we defined I by the 
relationships C = I , and also used the expression L = I .  Now that C, 
, L and  are vectors, we conclude that I must be a matrix, since a 
vector is made when I is multiplied by the vectors  or .  Our aim is to 
find the matrix that does the job. 

For this, we use our vector equations v =  × r and C = r × F, we let the 
components of r be (x,y,z), and we also use the mathematical result that 
for any three vectors A, B and C,      CBABCACBA  . 

                                            

11 We use  to represent the angle between r and , to distinguish it from the angle  between 
r and v, which is of course a right angle for a strict rotation. 

12 This intentionally does not include the centripetal acceleration, as before.  If you aim to 
calculate this a from the former equation v =  × r, then you get a = dv/dt = d(×r)/dt = ×r + 
×v = ×r + ×(×r) = ×r +  (r.) – r 2.  The final two terms in this equation deal with the 
centripetal acceleration.  However in real situations, the centripetal force is usually provided 
by internal or reaction forces, so often problems are simplified by not including it. 
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This result looks horrible.  However let us simplify matters by aligning 
our axes so that the z axis is the axis of the acceleration . In other 
words  = (0,0,).  We now have 

  α

yx

yz
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m

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




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




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
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22

C  

which is a little better.  Notice that it is still pretty nasty in that the torque 
required to cause this z-rotation acceleration is not necessarily in the z-
direction!  Another consequence of this is that the angular momentum L 
is not necessarily parallel to the angular velocity .  However for many 
objects, we rotate them about an axis of symmetry.  In this case the xz 
and yz terms become zero when summed for all the masses in the 
object, and what we are left with is the mass multiplied by the distance 
from the axis to the masses (that is x2 + y2).  Alternatively, for a flat 
object (called a lamina) which has no thickness in the z direction, the xz 
and yz terms are zero anyway, because z=0.  

At this point, you are perfectly justified in saying ‘yuk’ and sticking to two-
dimensional problems.  However this result we have just looked at has 
interesting consequences.  When a 3-d object has little symmetry, it can 
roll around in some very odd ways.  Some of the asteroids and planetary 
moons in our Solar System are cases in point. 

The moment of inertia can also be obtained from the rotational 
momentum, however, the form is identical to that worked out above from 
Newton’s second law, as shown here. 
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The calculation then proceeds as before. 
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3.10.1.2 General Kinetic Energy 

Our final detail is kinetic energy.  This can be calculated using v =  × r, 
and the vector rule that    ΑCBCBA  . 

  

 
  
  

 
 

ωωLω

prω

vrω

vrω

rωv

vv

I

m

m

m

mmvK













2
1

2
1

2
1

2
1

2
1

2
1

2
12

2
1

 

For the cases where I can be simplified, this reduces to the familiar form 
K = I 2/2. 

3.11 Motion in Polar Co-ordinates 
When a system is rotating, it often makes sense to use polar co-
ordinates.  In other words, we characterise position by its distance from 
the centre of rotation (i.e. the radius r) and by the angle  it has turned 
through.  Conversion between these co-ordinates and our usual 
Cartesian (x,y) form are given by simple trigonometry: 

  



sin

cos

ry

rx




 (1) 

 



r
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y 

r̂

θ̂

 

When analysing motion problems, though, there are complications if 
polar co-ordinates are used.  These stem from the fact that the 
‘increasing r’ and ‘increasing ’ directions themselves depend on the 
value of , as we shall see.  Let us start by defining the vector r to be the 
position of a particle relative to some convenient origin.  The length of 
this vector r gives the distance from particle to origin.  We define r̂  to be 
a unit vector parallel to r.  Similarly, we define the vector θ̂  to be a unit 
vector pointing in the direction the particle would have to go in order to 
increase  while keeping r constant.  Let us now evaluate the time 
derivative of r – in other words, let’s find the velocity of the particle: 
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where we have used the dot above a letter to mean ‘time derivative of’.  
Now if the particle does not change its , then the direction r̂  will not 
change either, and we have a velocity given simply by r̂r .  We next 
consider the case when r doesn’t change, and the particle goes in a 
circle around the origin.  In this case, our formula would say that the 

velocity was 
dt

d
r

r̂
.  We know from section 3.2 that in this case, the 

speed is given by r, that is r , so the velocity will be θ̂r .  In order to 
make this agree with our equation for dr/dt, we would need to say that  

 θr ˆˆ 
dt

d
. (3) 

Does this make sense?  If you think about it for a moment, you should 
find that it does.  Look at the diagram below.  Here the angle  has 
changed a small amount .  The old and new r̂  vectors are shown, and 
form two sides of an isosceles triangle, the angle between them being 
.  Given that the sides r̂  have length 1, the length of the third side is 
going to be approximately equal to  (with the approximation getting 
better the smaller  is).  Notice also that the third side – the vector 
corresponding to oldnew rr ˆˆ   is pointing in the direction of θ̂ .  This allows 

us to justify statement (1). 

 r 

θ̂

oldr̂newr̂



 

In a similar way, we may show that 

  rθ ˆˆ 
dt

d
. (4) 

Remembering that our velocity  is given by 

  θrrv ˆˆ  rr  , 

we may calculate the acceleration as 
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. (5) 

Now suppose that a force acting on the particle (with mass m), had a 
radial component Fr, and a tangential component F.  We could then 
write 
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There are many consequences of these equations for rotational motion.  
Here are three: 

1. For an object to go round in a circle (that is r staying constant, so that 
0 rr  ), we require a non-zero radial force 2mrFr  .  The minus 

sign indicates that the force is to be in the opposite direction to r, in 
other words pointing towards the centre.  This, of course, is the 
centripetal force needed to keep an object going around in a circle at 
constant speed. 

2. If the force is purely radial (we call this a central force), like gravitational 
attraction, then F= 0.  It follows that 
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and accordingly the angular momentum  22 mrmr   does not 
change.  This ought to be no surprise, since we found in section 3.6 
that angular momenta are only changed if there is a torque, and a 
radial force has zero torque. 

3. One consequence of the conservation of angular momentum is the 
apparently odd behaviour of an object coming obliquely towards the 
centre (that is, it gets closer to the origin, but is not aimed to hit it).  
Since r decreases,  must increase, and this is what happens – in fact 
the square term causes  to quadruple when r halves. 

  We can analyse this in terms of forces using (6):  
 rrmF 2  

when F= 0.  Since r is decreasing, while  increases, the non-zero 
value of the rm2  term gives rise to a non-zero  , and hence an 
acceleration of rotation.  If you were sitting next to the particle at the 
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time, you would wonder what caused it to speed up, and you would 
think that there must have been a force acting upon it.   

This is another example of a fictitious force (see section 1.1.3), and is 
called the Coriolis force.  It is used, among other things, to explain why 
the air rushing in to fill a low pressure area of the atmosphere begins to 
rotate – thus setting up a ‘cyclone’.  Some people have attempted to 
use the equation to explain the direction of rotation of the whirlpool you 
get above the plughole in a bath.   

Put very bluntly – the Coriolis force is the force needed to ‘keep’ the 
object going in a true straight line.  Of course, a stationary observer 
would see no force – after all things go in straight lines when there are 
no sideways forces acting on them.  The perspective of a rotating 
observer is not as clear – and this Coriolis force will be felt to be as real 
as the centrifugal force discussed in section 1.1.3.1. 

3.12 Motion of a rigid body 
When you are dealing with a rigid body, things are simplified in that it 
can only do two things – move in a line and rotate.  If forces Fi are 
applied to positions ri on a solid object free to move, its motion is 
completely described by 

 a linear acceleration given by Mi Fa , where M is the total 

mass of the body, and 

 a rotational acceleration given by Iii  Frα  about a point 

called the centre of mass, where ri’ is the position of point i 
relative to the centre of mass and I is the moment of inertia of 
the object about the axis of rotation.13 

This means, among other things, that the centre of mass itself moves as 
if it were a point particle of mass M.  In turn, if a force is applied to the 
object at the centre of mass, it will cause the body to move with a linear 
acceleration, without any rotational acceleration at all. 

The proof goes as follows.  Suppose the object is made up of lots of 
points ri (of mass mi) fixed together.  It follows that Newton’s second law 
states (as in section 1.1.1.2) 

                                            

13 This assumes that the angular acceleration is a simple speeding up or slowing down of an 
existing rotation.  If  and  are not parallel, the situation is more complex. 
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Now suppose we define the position R such that MR =  mi ri, then it 
follows that 

  total2

2

F
R


dt

d
M  

and the point R moves as if it were a single point of mass M being acted 
on by the total force.  This position R is called the centre of mass. 

Given that we already know that R does not have any rotational motion, 
this must be the centre of rotation, and we can use the equation from 
section 3.10 to show that the rate of change of angular momentum of the 
object about this point, d(I)/dt, is equal to the total torque  (ri – R)×Fi 
acting on the body about the point R.  Given that the masses don’t 
change, we may write 
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The final term sums to zero since fij+fji=0, and the internal forces 
between two particles must either constitute a repulsion, an attraction or 
the two forces must occur at the same place.  In any of these cases fij × 
(ri–rj) = 0.   

If we now express the positions ri in terms of the centre of mass position 
R and a relative position ri’, where ri = R + ri’ (so ai = A+ai’), then 
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since miri’ = mi(ri–R) = MR – MR = 0.  Now, as shown earlier, 
  iiiiiiiiiiii mmmdtmd araruuur  0 , and so 
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and so the rate of change of angular momentum about the centre of 
mass is given by the total moment of the external forces about the centre 
of mass. 

3.13 Questions 
1. A car has wheels with radius 30cm.  The car travels 42km.  By what angle 

have the wheels rotated during the journey?  Make sure that you give your 
answer in radians and in degrees. 

2. Why does the gravitational attraction to the Sun not change the angular 
momentum of the Earth? 

3. Calculate the speed of a satellite orbiting the Earth at a distance of 42 
000km from the Earth’s centre. 

4. A space agency plans to build a spacecraft in the form of a cylinder 50m in 
radius.  The cylinder will be spun so that astronauts inside can walk on the 
inside of the curved surface as if in a gravitational field of 9.8 N/kg.  
Calculate the angular velocity needed to achieve this. 

5. A television company wants to put a satellite into a 42 000km radius orbit 
round the Earth.  The satellite is launched into a circular low-Earth orbit 
200km above the Earth’s surface, and a rocket motor then speeds it up.  It 
then coasts until it is in the 42000km orbit with the correct speed.  How 
fast does it need to be going in the low-Earth orbit in order to coast up to 
the correct position and speed? 

6. Estimate the gain in angular velocity when an ice-skater draws her hands 
in towards her body. 
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7. One theory of planet formation says that the Earth was once a liquid 
globule which gradually solidified, and its rotation as a liquid caused it to 
bulge outwards in the middle – a situation which remains to this day: the 
equatorial radius of the Earth is about 20km larger than the polar radius.  If 
the theory were correct, what would the rotation rate of the Earth have 
been just before the crust solidified?  Assume that the liquid globule was 
sufficiently viscous that it was all rotating at the same angular velocity. 
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4 Vibes and Wiggles 

4.1 Oscillation 
Any system in stable equilibrium can be persuaded to oscillate.  If it is 
removed from the equilibrium, there will be a force (or other influence) 
that attempts to maintain the status quo.  The size of the force will 
depend on the amount of the disturbance. 

Suppose that the disturbance is called x.  The restoring force can be 
written 

   32 CxBxAxF  , (1) 

where the minus sign indicates that the force acts in the opposite 
direction to the disturbance.  If x is small enough, x2 and x3 will be so 
small that they can be neglected.  We then have a restoring force 
proportional to the displacement x. 

Just because the system has a force acting to restore the equilibrium, 
this does not mean that it will return to x=0 immediately.  All systems 
have some inertia, or reluctance to act quickly.  For a literal force, this 
inertia is the mass of the system – and we know that the acceleration 
caused by a force (F) is given by F/m, where m is the mass.  We can 
therefore work on equation (1) to find out more: 

  

x
m

A

dt

xd

Ax
dt

xd
mF





2

2

2

2

. (2) 

This differential equation has the solution: 

  
 

mA

txx







cos0
, (3) 

which is indeed an oscillation.  We are using x0 to denote the amplitude.  
Notice that, as we are working in radians, the cosine function needs to 
advance 2 to go through a whole cycle.  Therefore we can work out the 
time period (T) and frequency (f): 

  








2

1

2

2







T
f

T

T

. (4) 
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Seeing that =2f, we notice that  is none other than the angular 
frequency of the oscillation, as defined in chapter 3. 

These equations are perfectly general, and so whenever you come 
across a system with a differential equation like (2), you know the 
system will oscillate, and furthermore you can calculate the frequency. 

4.1.1 Non-linearity 
Equation (1) has left an unanswered question.  What happens if x is big 
enough that x2 and x3 can’t be neglected?  Clearly solution (3) will no 
longer work.  In fact the equation probably won’t have a simple solution, 
and the system will start doing some really outrageous things.  Given 
that it has quadratic terms in it, we say it is non-linear; and a non-linear 
equation will send most physics students running away, screaming for 
mercy. 

Let me give you an example.  There are very nice materials that look 
harmlessly transparent.  However they are designed so that the non-
linear terms are very important when light passes through them.  The 
result – you put red laser light in, and it comes out blue (at twice the 
frequency).  They are called ‘doubling crystals’ and are the sort of thing 
that might freak out an unsuspecting GCSE examiner. 

Our world would be much less wonderful if it were purely linear – no 
swirls in smoke, no wave-breaking (and hence surfing), and extremely 
boring weather – not to mention rigid population dynamics.  While the 
non-linear terms add to the spice of life, I for one am grateful that many 
phenomena can be well described using linear equations.  Otherwise 
physics would be much more frustrating, and bridge design would be just 
as hard as predicting the weather. 

4.1.2 Energy  
Before we move from oscillations to waves, let us make one further 
observation.  The energy involved in the oscillation is proportional to the 
square of the amplitude.  We shall show this in two ways. 

First:  If the displacement is given by equation (3), we notice that the 
velocity is given by 

     txxu sin0 . (5) 

At the moment when the system passes through its equilibrium (x=0) 
point, all the energy is in kinetic form.  Therefore the total energy is 

    2
0

2
2
12

2
1

0 xmmuxxKE   (6) 

which is indeed proportional to the amplitude squared. 
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Second:  When the displacement is at its maximum, there is no kinetic 
energy.  The energy will all be in potential form.  We can work out the 
potential energy in the system at displacement x, by evaluating the work 
done to get it there: 

   2
2
1 AxAxdxFdxE pot    . (7) 

Notice that we did not include the minus sign on the force.  This is 
because when we work out the ‘work done’ the force involved is the 
force of us pulling the system.  This is equal and opposite to the 
restoring force of the system, and as such is positive (directed in the 
same direction as x). 

The total energy is given by the potential energy at the moment when x 
has its maximum (i.e. x=x0).  Therefore 

    2
02

1
0 AxxxEE pot  . (8) 

Equations (8) and (6) are in agreement.  This can be shown by inserting 
the value of  from equation (3) into (6). 

While we have only demonstrated that energy is proportional to 
amplitude squared for an oscillation, it turns out that the same is true for 
linked oscillators – and hence for waves.  The intensity of a wave (joules 
of energy transmitted per second) is proportional to the amplitude 
squared in exactly the same way. 

Intensity of a wave is also related to another wave property – its speed.  
The intensity is equal to the amount of energy stored on a length u of 
wave, where u is the speed.   This is because this is the energy that will 
pass a point in one second (a length u of wave will pass in this time). 

4.2 Waves & Interference 
The most wonderful property of waves is that they can interfere.  You 
can add three and four and get six, or one, or 4.567, depending on the 
phase relationship between the two waves.  You can visualize this using 
either trigonometry or vectors (phasors).  However, before we look at 
interference in detail, we analyse a general wave. 

4.2.1 Wave number 
Firstly, we define a useful parameter called the wave number.  This is 
usually given the letter k, and is defined as 

  

2

k , (13) 
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where  is the wavelength.  If we write the shape of a ‘paused’ wave as 
y=A cos(), the phase  of a wave is given by  

  kD . (14) 

We can see that this makes sense by combining equations (13) and 
(14): 

  

 D

kD
2

 . (15) 

If the distance D is equal to a whole wavelength, we expect the wave to 
be doing the same thing as it was at =0.  And since cos(2)=cos(0), this 
is indeed the case. 

A variation on the theme is possible.  You may also see wave vectors k: 
these have magnitude as defined in (13), and point in the direction of 
energy transfer. 

4.2.2 Wave equations 
We are now in a position to write a general equation for the motion of a 
wave with angular frequency  and wave number k: 

     kxtAy cos . 

We can check that this is correct, since 

 if we look at a particular point (value of x), and watch as time passes, 
we will pass from one peak to the next when t =2f t has got bigger 
by 2 (i.e. t=1/f as it should). 

 if we look at a particular moment in time (value of t), and look at the 
position of adjacent peaks, they should be separated by one 
wavelength = 2/k.  Now for adjacent peaks, the values of kx will 
differ by 2according to the formula above, and so this is correct. 

 if we follow a particular peak on the wave – say the one where t–
kx+f=0, we notice that x=(t+f)/k = t/k + constant, and hence the 
position moves to increasing x at a speed equal to /k, as indeed it 
should since /k = 2f/(2/) = f = v. 

It follows that a leftwards-travelling wave has a function which looks like 

     kxtAy cos . 
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4.2.3 Standing waves 
Imagine we have two waves of equal amplitude passing along a string in 
the two different directions.  The total effect of both waves is given by 
adding them up: 

  
   

     122
1

212
1

21

coscos2

coscos







kxt

kxtAkxtAy
 

At any time, the peaks and troughs will only occur at the places where 
the second cosine is +1 or –1, and so the positions of the peaks and 
troughs do not change.  This is why this kind of situation is called a 
standing wave.  While there is motion, described by the first cosine, the 
positions of constructive interference between the two counter-
propagating waves remain fixed (these are called antinodes), as to the 
positions of destructive interference (the nodes). 

While there are many situations which involve counter-propagating 
waves, this usually is caused by the reflection of waves at boundaries 
(like the ends of a guitar string).  Accordingly, there is nothing keeping 
the phase constants 1 and 2 the same, and so the standing wave 
doesn’t develop.  However if the frequency is just right, then it works, as 
indicated in section 4.2.7.5.  

4.2.4 Trigonometric Interference 
We are now in a position to look at the fundamental property of waves – 
namely interference.  Our first method of analysis uses trigonometry.  
Suppose two waves arrive at the same point, and are described by 

 tAx cos1   and    tBx cos2  respectively.  To find out the 
resulting sum, we add the two disturbances together.  

  

 

 
 

 















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tBtBA
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xxX

00

0
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sinsincoscos

sinsincoscos

sinsincoscoscos

coscos

 (9) 

where we define 

  

   

00

22

22
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sin
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cos
cos

cos2
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X

B

X

BA

ABBA

BBAX
















  . (10) 
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The amplitude of the resultant is given by X0.  Notice that if A=B, the 
expression simplifies: 

  
 

 
 







2
1

2
12

0

cos2

cos4

cos12

cos22

A

A

A

AX









, (11) 

and we obtain the familiar result that if the waves are ‘in phase’ (=0), 
the amplitude doubles, and if the waves are  radians (half a cycle) ‘out 
of phase’, we have complete destructive interference. 

Equation (10) can be used to provide a more general form of this 
statement – the minimum resultant amplitude possible is |A-B|, while the 
maximum amplitude possible is A+B. 

This statement is reminiscent of the ‘triangle inequality’, where the length 
of one side of a triangle is limited by a similar constraint on the lengths of 
the other two sides.  This brings us to our second method of working out 
interferences: by a graphical method. 

4.2.5 Graphic Interference 
In the graphic method a vector represents each wave.  The length of the 
vector gives the amplitude, and the relative orientation of two vectors 
indicates their phase relationship.  If the phase relationship is zero, the 
two vectors are parallel, and the total length is equal to the sum of the 
individual lengths.  If the two waves are  out of phase, the vectors will 
be antiparallel, and so will partly (or if A=B, completely) cancel each 
other out. 

The diagram below shows the addition of two waves, as in the situation 
above.  Notice that since + = , cos  = –cos.  One application of 
the cosine rule gives 

  cos222
0 ABBAX   (12) 

in agreement with equation (10). 

  

A 

B 
X 


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4.2.6 Summary of Interference Principles 
The results of the last section allow us to determine the amplitude once 
we know the phase difference between the two waves.  Usually the two 
waves have come from a common source, but have travelled different 
distances to reach the point.  Let us suppose that the difference in 
distances is D – this is sometimes called the path difference.  What will  
be? 

To find out, we use the wave number k.  The phase difference  is given 
by  

  

 D

kD
2

 . (14) 

If the distance D is equal to a whole wavelength, we expect the two 
waves to interfere constructively, since peak will meet peak, and trough 
will meet trough.  In equation (15), if D=, then =2, and constructive 
interference is indeed obtained, as can be seen from equation (12).  
Similarly, we find that if D is equal to /2, then =, and equation (12) 
gives destructive interference. 

4.2.7 Instances of two-wave interference 

4.2.7.1 Young’s “Two Slit Experiment” 

Two cases need to be dealt with.  The first is known as the two-slit 
experiment, and concerns two sources in phase, which are a distance d 
apart, as shown in the diagram below.  The path difference is given by 

sindD  , in the case that d is much smaller than the distance from 
sources to observer.  Using the conditions in the last section, we see 
that interference will be constructive if  ndD  sin  where n is an 
integer. 

 

To observation 
point  





D = d sin  

d 

 

4.2.7.2 Thin films and colours on soap bubbles 

The second case is known as thin film interference, and concerns the 
situation in the diagram below.  Here the light can take one of two 
routes.   
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The path difference is calculated: 

  

cos2

CEAC

CBAC

t

D





 

Before we can work out the conditions required for constructive or 
destructive interference, there is an extra caution to be borne in mind – 
the reflections. 

4.2.7.3 Hard & Soft Reflections 

The reflection of a wave from a surface (or more accurately, the 
boundary between two materials) can be hard or soft. 

 Hard reflections occur when, at the boundary, the wave passes into 
a ‘sterner’ material.  At these reflections, a peak (before the 
reflection) becomes a trough (afterwards) and vice-versa.  This is 
usually stated as “a  phase difference is added to the wave by the 
reflection.”  These mean the same thing since    coscos  . 

To visualize this – imagine that you are holding one end of a rope, 
and a friend sends a wave down the rope towards you.  You keep 
your hand still.  At your hand, the incoming and outgoing waves 
interfere, but must sum to zero (after all, your hand is not moving, 
so neither can the end of the rope).  Therefore if the incoming wave 
is above the rope, the outgoing wave must be below.  In this way, 
peak becomes trough and vice-versa. 

 Soft reflections, on the other hand, are where the boundary is from 
the ‘sterner’ material.  At these reflections, a peak remains a peak, 
and there is no phase difference to be added. 
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What do we mean by ‘sterner’?  Technically, this is a measurement of 
the restoring forces in the oscillations which link to produce the wave – 
the A coefficients of (1).  However, the following table will help you to get 
a feel for ‘sternness’. 

Wave From To Reflection 

Light Reflection off mirror Hard 

Light Air Water / Glass Hard 

Light Water / Glass Air Soft 

Light Lower refractive 
index 

Higher refractive 
index 

Hard 

Sound Solid / liquid Air Soft 

Sound Air Solid / liquid Hard 

Wave on string Reflection off fastened end of string Hard 

Wave on string Reflection off unsecured end of string Soft 

 

4.2.7.4 Film Interference Revisited 

Going back to our thin film interference: sometimes both reflections will 
be hard; sometimes one will be hard, and the other soft. 

The formulae for constructive interference are:  

 Both reflections hard, or both soft:    ntD  cos2  (16) 

 One reflection hard, one soft:      ntD  2
1cos2  (17) 

The difference comes about because of the phase change on reflection 
at a hard boundary. 

4.2.7.5 Standing Waves 

Equations (16) and (17) with =0 can be used to work out the 
wavelengths allowed for standing waves.  For a standing wave, we must 
have constructive interference between a wave and itself (having 
bounced once back and forth along the length of the device).  The 
conditions for constructive interference in a pipe, or on a string of length 
L (round trip total path = 2L) are 
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  nL 2   soft reflections at both ends 
   2

12  nL   soft reflection at one end 

   12  nL   hard reflections at both ends. 

4.2.7.6 Two waves, different frequencies 

All the instances given so far have involved two waves of identical 
frequencies (and hence constant phase difference).  What if the 
frequencies are different?  Let us suppose that our two waves are 
described by tAx 11 cos  and tBx 22 cos , where we shall write 

12   .  When we add them, we get: 

   
 










tX

ttBttBA

ttBttBtA

xxX

10

11

111

21

cos

sinsincoscos

sinsincoscoscos
, (18) 

where 

  

   

0

22

22
0

cos
cos

cos2

sincos

X

tBA

tABBA

tBtBAX














. (19) 

We see that the effective amplitude fluctuates, with angular frequency .  
On the other hand, if the two original waves had very different 
frequencies, then this fluctuation may be too quick to be picked up by the 
detector.  In this case, the resultant amplitude is the root of the sum of 
the squares of the original amplitudes.  Put more briefly – if the 
frequencies are very different, the total intensity is simply given by the 
sum of the two constituent intensities. 

These fluctuations are known as ‘beats’, and the difference f2-f1 is known 
as the beat frequency.  To give an illustration: While tuning a violin, if the 
tuning is slightly off-key, you will hear the note pulse: loud-soft-loud-soft 
and so on.  As you get closer to the correct note, the pulsing slows down 
until, when the instrument is in tune, no pulsing is heard at all because 
f2-f1=0. 

4.2.8 Adding more than two waves 

4.2.8.1 Diffraction Grating 

The first case we come to with more than two waves is the diffraction 
grating.  This is a plate with many narrow transparent regions.  The light 
can only get through these regions.  If the distance between adjacent 
‘slits’ is d, we obtain constructive interference, as in section 4.2.4.1, 
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when  nd sin  - in other words when the light from all slits is in 
phase. 

The difference between this arrangement and the double-slit is that 
when  nd sin  we find that interference is more or less destructive.  
Therefore a given colour (or wavelength) only gets sent in particular 
directions.  We can use the device for splitting light into its constituent 
colours. 

4.2.8.2 Bragg Reflection 

A variation on the theme of the diffraction grating allows us to measure 
the size of the atom. 

  

d 




 

The diagram shows a section of a crystal.  Light (in this case, X-rays) is 
bouncing off the layers of atoms.  There are certain special angles for 
which all the reflections are in phase, and interfere constructively. 

Looking at the small triangle in the diagram, we see that the extra path 
travelled by the wave bouncing off the second layer of atoms is 

  sin2dD  . (20) 

When D=n, we have constructive interference, and a strong reflection.  
There is one thing that takes great care – notice the definition of q in the 
diagram.  It is not the angle of incidence, nor is it the angle by which the 
ray is deflected – it is the angle between surface and ray.  This is equal 
to half the angle of deflection, also equal to /2 – i. 

Using this method, the spacing of atomic layers can be calculated – and 
this is the best measurement we have for the ‘size’ of the atom in a 
crystal. 

4.2.8.3 Diffraction 

What happens when we add a lot of waves together?  There is one case 
we need to watch out for – when all possible phases are represented 
with equal strength.  In this case, for each wave   tcos , there will be 

an equally strong wave      tt coscos , which will cancel it 
out. 
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How does this happen in practice?  Look at the diagram below. 
Compared with the wave from the top of the gap, the path differences of 
the waves coming from the other parts of the gap go from zero to 

sinmax WD  , where W is the width of the gap. 

 

To observation 
point  





Dmax = W sin  

W 

 

If kDmax is a multiple of 2, then we will have all possible phases 
represented with equal strength, and overall destructive interference will 
result. 

To summarize, destructive interference is seen for angles , where 

   nW sin . (21) 

Make sure you remember that W is the width of the gap, and that this 
formula is for destructive interference. 

This formula is only valid (as in the diagram) when the observer is so far 
away that the two rays drawn are effectively parallel.  Alternatively the 
formula works perfectly when it is applied to an optical system that is 
focused correctly, for then the image is at infinity. 

4.2.8.4 Resolution of two objects 

How far away do you have to get from your best friend before they look 
like Cyclops?  No offence – but how far away do you have to be before 
you can’t tell that they’ve got two eyes rather than one?  The results of 
diffraction can help us work this out.  Let’s call this critical distance L. 

The rays from both eyes come into your eyeball.  Let us suppose that 
the angle between these rays is , where  is small, and that your 
friend’s eyes are a distance s apart.  Therefore Ls  sintan .  
These two rays enter your eye, and spread out (diffract) as a result of 
passing through the gap called your pupil.  They can only just be 
‘resolved’ – that is noticed as separate – when the first minimum of one’s 
diffraction pattern lines up with the maximum of the other.  Therefore 

 sinW  where W is the width of your pupil. 
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Pupil of your eye 



 

Putting the two formulae together gives: 

  





sW
L

WL

s



sin
. (22) 

For normal light (average wavelength about 500nm), a 5mm pupil, and a 
10cm distance between the eyes: you friend looks like Cyclops if you are 
more than 1km away!  If you used a telescope instead, and the 
telescope had a diameter of 10cm, then your friend’s two eyes can be 
distinguished at a distances up to 20km. 

4.2.8.5 The Bandwidth Theorem 

In the last section, we asked the question, “What happens when you add 
lots of waves together?”  However we cheated in that we only 
considered waves of the same frequency.  What happens if the waves 
have different frequencies? 

Suppose that we have a large number of waves, with frequencies evenly 
spread between f and f+f.  The angular frequencies will be spread from 
 to +, where =2f as in equation (4).  Furthermore, imagine that 
we set them up so that they all agree in phase at time t=0.  They will 
never agree again, because they all have different frequencies.   

The phases of the waves at some later time t will range from t to 
()t. 

Initially we have complete constructive interference.  After a short time 
t, however, we have destructive interference.  This will happen when 
(as stated in the last section) all phases are equally represented – when 
the range of phases is a whole multiple of 2.  This happens when 
t×=2. After this, the signal will stay small, with occasional complete 
destructive interference. 

From this you can reason (if you’re imaginative or trusting) that if you 
need to give a time signal, which has a duration smaller than t, you 
must use a collection of frequencies at least =2/t.  This is called the 
bandwidth theorem.  This can be stated a little differently: 
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A similar relationship between wavelength and length can be obtained, if 
we allow the wave to have speed c: 
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Expressed in terms of the wave number k, this becomes: 
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In other words, if you want a wave to have a pulse of length x at most, 
you must have a range of k values of at least 2/x. 

4.2.8.6 Resolution of spectra 

A spectrometer is a device that measures wavelengths.  Equation (25) 
can be used to work out the accuracy (or resolution) of the 
measurement. 

If you want a minimum error k in the wavenumber, you must have a 
distance of at least x=2/k.  But what does this distance mean?  It 
transpires that this is the maximum path difference between two rays in 
going through the device – and as such is proportional to the size of the 
spectrometer.  So, the bigger the spectrometer, the better its 
measurements are. 

4.2.9 Doppler Effect 

4.2.9.1 Classical Doppler Effect 

Suppose a bassoonist is playing a beautiful pure note with frequency f.  
Now imagine that he is practising while driving along a road.  A fellow 
motorist hears the lugubrious sound.  What frequency does the listener 
hear?  Let us suppose that the player is moving at velocity u, and the 
listener is moving at velocity v.  For simplicity we only consider the 
problem in one dimension, however velocities can still be positive or 
negative. 
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Furthermore, imagine that the distance between player and listener is L0 
at time zero, when the first wave-peak is broadcast from the bassoon.  
We assume that the waves travel at speed c with respect to the ground. 

This peak is received at time t1, where 
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ctvtL




 (26) 

The first line is constructed like this: The travellers start a distance L0 
apart, so by the time the signal is received, the distance between them is 
L0 + vt1.  This distance is covered by waves of speed c in time t1 – hence 
the right hand side. 

The next wave peak will be broadcast at time 1/f – one wave cycle later.  
At this time, the distance between the two musicians will be 

    fuvLTuvL /00  .  This second peak will be received at time 

t2, where 
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Finally we can work out the time interval elapsed between our listener 
hearing the two peaks, and from this the apparent frequency is easy to 
determine. 
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From this we see that if v=u, no change is observed.  If the two are 
approaching, the apparent frequency is high (blue-shifted).  If the two are 
receding, the apparent frequency is low (red-shifted). 

4.2.9.2 Relativistic Doppler Effect 
Please note that if either u or v are appreciable fractions of the speed of 
light, this formula will give errors, and the relativistic calculation must be 
used. 

For light only, the relativistic formula is 
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where u is the approach velocity as measured by the observer (u is 
negative if the source and observer are receding).  The relativistic form 
for other waves is more complicated, and will be left for another day. 

4.3 Questions 
1. A hole is drilled through the Earth from the U.K. to the centre of the Earth 

and out of the other side.  All the material is sucked out of it, and a 1kg 
mass is dropped in at the British end.  How much time passes before it 
momentarily comes to rest at the Australian end?  (NB You may need 
some hints from section 1.2.4) + 

2. Repeat q1 where a straight hole is drilled between any two places on 
Earth.  Assume that the contact of the mass with the sides of the hole is 
frictionless. ++ 

3. In an interferometer, a beam of coherent monochromatic light (with 
wavelength ) is split into two parts.  Both parts travel for a distance L 
parallel to each other.  One travels in vacuum, the other in air.  The 
beam is then re-combined.  If destructive interference results, what can 
you say about L, and nair? 

4. Your wind band is about to play on a pick-up truck going down a 
motorway at 30m/s.  You want people on the bridges overhead to hear 
you playing ‘in tune’ (such that treble A is 440Hz) when you are coming 
directly towards them.  What frequency should you tune your 
instruments to? 

5. A police ‘speed gun’ uses microwaves with a wavelength of about 3cm.  
The ‘gun’ consists of a transmitter and receiver, with a small mirror which 
sends part of the transmission directly into the receiver.  Here it 
interferes with the main beam which has reflected off a vehicle.  The 
received signal strength pulsates (or beats).  What will be the frequency 
of this pulsation if the vehicle is travelling towards you at 30mph? + 

6. How far away do you need to hold a ruler from your left eye before you 
can no longer resolve the millimetre markings?  Keep your right eye 
covered up during this experiment.  Use equation (22) to make an 
estimate for the wavelength of light based on your measurement.  
Remember that W is the width of your pupil. 

7. A signal from a distant galaxy has one third of the frequency you would 
expect from a stationary galaxy.  Calculate the galaxy’s recession 
velocity using equation (29), and comment on your answer.  (NB red-
shifts this big are measured with very distant astronomical objects.) 
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5 Optics 

5.1 Principles 
This chapter is concerned with light.  Given that light can be treated in 
most practical situations as a wave, you might think that having covered 
waves in Chapter 4, there is nothing more to be said.  In many cases, 
however, given that the wavelength of light is so much shorter than the 
apparatus we use, the effects of diffraction and interference can be 
ignored, and we can simply assume that light travels in straight lines. 

This simplifies our working, which is highly necessary if we wish to study 
the inner workings of lenses and optical systems.  We begin with the 
fundamentals of reflection and refraction.  We then introduce you to Ray 
Optics which allows the calculation of the route of light through complex 
systems. 

5.1.1 Reflection and Refraction 
The diagram below shows both reflection and refraction.  We refer to a 
refractive index of a material, which is defined as 

  
material the in light of Speed

vacuum in light of Speed
)(Index  Refractive n . (1) 

Air has a refractive index of about 1.000314, glass has a refractive index 
of about 1.5, and water about 1.3. 

  

r 

i i 
n 

n 

1 

2 

 

First of all, the angle of reflection is equal to the angle of incidence (both 
were labelled i in the diagram). 

                                            

14 The refractive index also gives a measure of pressure, since n-1 is proportional to pressure. 
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Secondly, the angle of incidence is related to the angle of refraction r by 
the formula: 
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n
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i
  (2) 

Notice that since the sine of an angle can be no larger than one, if n2<n1, 
then refraction becomes impossible if  12

1sin nni  .  This limiting angle 
is called the critical angle.  For greater angles of incidence, the entire 
wave is reflected, and this is called total internal reflection. 

When a wave passes from one material into another, the frequency 
remains the same (subject to the linearity provisos of section 4.1.1).  
Given that the speed changes, the wavelength will change too.  The 
wavelength of light in a particular material can be evaluated: 
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where c0 (and 0) represent speed of light (and wavelength) in vacuum. 

5.1.2 Fermat’s Principle 
Fermat’s principle gives us a method of working out the route light will 
take in an optical system.  It states that light will take the route that takes 
the least time.  Given that the time taken in a single material is equal to 
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where c0 is the speed of light in vacuum; minimizing the time is the same 
as minimizing the product of distance and refractive index.  This latter 
quantity (nD) is called the optical path.  It is possible to prove the laws of 
reflection and refraction using this principle.15 

5.2 Ray Optics 

5.2.1 The Paraxial Ray approximation and Apparent Depth 
When studying an optical system, we obtain much clearer, linear 
equations (which fit with the vast majority of practical situations) by 

                                            

15 To do this, imagine the plane as a sheet of graph paper, with the boundary along the x-axis.  
Suppose that the light starts at point (0,Y), and needs to get to (X,-Y).  Now assume that the 
light crosses the x-axis at point (x,0).  Work out the total optical path travelled along the route, 
and then minimize it with respect to x.  You should then be able to identify sin i and sin r in the 
algebraic soup, and from this, you should be able to finish the proof. 
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making the assumptions that our rays make small angles to the optical 
axis.  Our diagrams will always show the axis as a horizontal line, with 
the rays passing from left to right.  When tracing a ray through a system, 
we use two parameters.  The displacement h records how far above the 
axis the ray is at that particular point, while the angle α measure the 
angle between the ray and the axis (where upward slopes are 
considered positive). 

The use of the small angle approximation enables us to assume that 
sin(α) = α, where of course we measure all of our angles in radians.  
Please see section 3.1 if you need further information about radians. 

The simplest situation is where a ray strikes a boundary into a material 
of different refractive index.  Here light from an object of height h0 hits a 
boundary after travelling distance u in a material with refractive index n1. 

 

Our equation of refraction tells us that sin(α1)/sin(α2) = n2/n1. It follows 
that n1 sin α1 = n2 sin α2, and if we use the paraxial ray approximation, 
this simplifies to n1 α1 = n2 α2, so α2 = n1 α1 / n2. 

If we are interested in the height of the ray as it hits the boundary (h1), 
this is equal to h0 + u tan α1, which by the small angle approximations 
means that h1 = h0 + u α1. 

From the perspective of a viewer in the material on the right (of refractive 
index n2), the light appears to come from a virtual image a distance u’ 
from the boundary.  Given that h0 + u’ α2 = h1, it follows that u’ α2 = u α1, 
and thus that u’ n1 α1 / n2 = u α1.  From this you can see that u’ = u n2/n1.  
The fact that the α1 cancelled out of the equation is significant.  This 
means that all light coming from the object appears to come from depth 
u’ within the n1 material – not just the light emitted at the particular angle 
α1. 

The distance u’ is sometimes called the apparent depth, and can 
therefore be calculated by the formula u’ = u n2/n1.  To visualize this, 
imagine a coin in a mug of water, where the water is of depth u.  In this 
situation, n1 = nwater ≈ 1.3.  When viewed from above (from the air where 
n2 = nair = 1), the coin seems to be at depth u’ = u n2/n1 ≈ u / 1.3 ≈ 0.8 u. 

α1  
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n1  n2  

Axis  h0  
h1  

α1  

u 
h0  
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This is why objects underwater look closer to the surface than they really 
are. 

5.2.2 Oblique Boundaries and Curvature 
We next consider the situation when the boundary is not perpendicular 
to the axis.  This is a vital intermediate step before we can deal with 
lenses. 

 

In this situation, the boundary makes an angle θ to the vertical.  The 
incident angle i = θ + α1, while the angle of refraction is r = θ + α2. 

The Law of Refraction in this case gives us n1 × i = n2 × r, so 

     2211   nn . (5) 

We next consider a curved boundary. We assume that the curve is the 
arc of a circle of radius R, with the centre of the circle on the axis.  R is 
regarded as positive if it is to the right of the arc.  We can analyse its 
effect on the light if we calculate the value of θ for each possible height h 
at which a ray of light might strike the boundary. 

 

Here light strikes a curved boundary at height above the axis.  This 
height h = R sin θ, or in the small angle approximation, h = R θ.  It 
follows that θ = h/R. 

Substituting this into equation (5) gives us 
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5.2.3 Thin Lenses 
We are now in a position to apply our knowledge to a simple practical 
situation – viewing objects in lenses.  Initially we consider the simplest 
kind.  These are ‘thin’ lenses where we assume that the value of h will 
not change as the light progresses through the lens. 

Let us consider light arriving at the lens at a distance h1 above the axis, 
with an initial angle to the axis of α1.  The light arrives in air (n1 = 1).  It 
first meets a surface of radius R1, and goes into the material of the lens, 
which has refractive index n2.  It then meets a second curved surface of 
radius R2, and passes back out into air again (n3 = 1).  We take the 
angles made by the ray to the axis as α2 in the lens, and α3 after it has 
left the lens. 

For the first surface, equation (6) becomes 
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and for the second surface we have 
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Putting the two equations together gives 
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We usually group together the parts which are entirely dependent on the 
lens and call it the power of the lens: 
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This simplifies equation (7) to  

  113 Ph    (9) 
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where our choice of sign convention means that positive powers of lens 
direct the ray back toward the axis (reducing the magnitude of α). 

Let us know consider what this lens will do to our ray of light from the 
object of height h0 a distance u to the left of the lens. 

 

We already know that h1 = h0 + α1 u.  It is also true that h2 = h1 + α3 v. 
Putting these facts together with equation (9) we have 
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Something particularly amazing happens if we choose the value of v so 
that the final term in brackets is zero.  In this case, the value of h2 does 
not depend upon α1, but only on h0.  In other words, all of the light from 
the height h0 is brought to the same height h2.  Furthermore, h2 is 
proportional to h0, and so an image of the original object has been 
formed, with magnification M = 1 – Pv. 

In order for this to be true we require 
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Optical folk frequently refer to the focal length of lenses.  The focal 
length is the distance f required to bring a parallel beam of light to one 
point.  To find an expression for the focal length we look once more at 
equation (10).  If we arrange matters so that 1 = Pv, then the height h2 is 
independent of the original height, and only dependent on the angle.  
This means that if the light was parallel to begin with (all rays had the 
same value of α1), it would all be brought to the same place.  By 
definition in this case, v=f.  Accordingly, 1 = Pf, and 
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Lens powers are measured in dioptres (D), so an f=5cm lens has a 
power of P=1 / 0.05m = 20D.  Using this notation, equation (11) can be 
rewritten 
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This is sometimes known as the lens equation, as it tells you where to 
expect images for particular strengths of lenses given the object 
distances u.  Equation (8) is known as the lens-maker’s formula as it tells 
you the radii of curvature needed to make a lens with a given power or 
focal length.  You can see from this equation that the larger the refractive 
index of the material, the larger the radii, and accordingly the thinner the 
lens can be.  Opticians take great pleasure in selling these lenses in 
spectacles as they are less heavy, many find them more elegant. 

The magnification, defined as h2/h0 has already been shown to be equal 
to 1-Pv.  By similar triangles, it is also equal to -v/u. 

5.2.3.1 Convex Lenses 

A convex lens is one which is thicker in the middle than at the edges.  
Remembering our convention that curvature of a surface is positive if the 
centre of the circle is to the right of the curve itself, then we will definitely 
have a convex lens if R1 is positive and R2 is negative, however as long 
as R1>R2 then the lens will be thicker in the middle, equation (8) tells us 
that it will have a positive power and it will have the effect of directing 
rays towards the axis. 

Using equation (13),  
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If u<f, then v becomes negative, and a virtual image is formed behind 
the lens.  This is what is happening in a magnifying glass.  If u>f, then a 
real image will be formed. The magnification is given by 
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Given that for the image to be real (v>0), we must have u>f, all real 
images have negative magnification.  This means that upward pointing 
objects for downward pointing images.  The image will be the same size 
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as the object when M= –1, which equation (15) tells us will occur when 
u=2f.  If the object distance is greater than 2f, then |M|<1 and the image 
is diminished, whereas if f<u<2f, then |M|>1 and the image is magnified. 

Note that convex lenses can be used to shorten the distance needed to 
bring rays to a focus.  This is how they are used in spectacles for 
patients with long sight.  Rays which were heading to focus behind the 
retina rather than on it because the eyeball was too short or the eye’s 
lens was too weak can be focused clearly on the retina instead. 

5.2.3.2 Concave Lenses 

A concave lens is thinner in the middle that at the edges.  This will 
definitely be the case if R1 is negative and R2 is positive, but will be true 
as long as R1<R2.  Concave lenses accordingly have a negative power, 
and in equations such as (13) we take the focal length f as negative too.  
This means that when a parallel beam of light strikes the lens, it is 
spread out to look as if it came from a single point a distance f behind 
the lens.  For rays coming from an object (the situation where u is 
positive), the concave lens will always form a virtual image, as can be 
seen from the fact that if you put a negative value for f into equation (14), 
v will be less than zero.  Equation (15) also makes it clear that such 
images will always be diminished as M will be less than 1 (but positive) if 
u is positive but f is negative. 

Concave (negative power) lenses can form real images if the light 
entering them is sufficiently converging.  This situation can be modelled 
by setting u as negative (e.g. rays which would have converged to a 
point 5cm to the right of the lens would be said to have u= – 0.05m).  
The lens in this case will cause the focus to move to the right. 

Therefore concave lenses can be used to lengthen the distance before 
rays reach a focus.  Patients with short sight tend to have an eyeball 
which is too large or an eye lens which is too strong, and accordingly the 
sharp image is formed in front of the retina rather than on it.  The 
concave lens moves it back onto the retina. 

5.2.3.3 Multiple Lenses acting as One 

If two lenses are placed one-behind-the-other, their effects are 
combined.  Let us initially assume that there is no gap.  In this case, we 
assume that the value of h will not change between the lenses.  This 
enables us to write two versions of equation (7) for the two lenses. 

First lens (light enters at α1, and leaves at α3) 
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Second lens (light enters at α3, and leaves at α5).  We assume that the 
refractive index of the material in this lens is n4, and that the radii of 
curvature of the surfaces are R3 and R4. 
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So therefore,  
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In short, the combination acts as a single lens of power P1 + P2. 

There is a complication if there is a gap between the lenses.  If the gap 
width is d, then the distance from the axis at the second lens will be 

dhh 312  .  In this case 

 
   

     21212111212111

212323132235

1

1

dPPdPPPhPhdPhP

PhdPPdhPh







. (17) 

This is a complicated expression, but two assumptions simplify it.  
Firstly, remember that under the small angle approximation α≪1.  
Secondly d must be much smaller than the focal lengths of the lenses, or 
we would not be able to regard this as a single lens – the image could 
well be in between the two lenses, for example.  If this is the case, the 
final term (α1dP2) can be assumed to be significantly smaller than the 
other terms (it contains two small numbers α1 and d, and only one big 
one P2, whereas other terms have only one small number, or if they 
have two {e.g. h1dP1P2} this is counterbalanced by two large ones). 

In the cases where these assumptions are valid the power of the two 
lenses is  

  2121 PdPPPP  . (18) 

Where the assumptions are not valid, it is unwise to look for a simple 
solution, and the overall combination can not be treated simply as a lens 
with a particular power.  A method for analysing such systems in terms 
of matrices is introduced later in this chapter. 

5.3 Optical Systems 

5.3.1 Magnifying lens 
The usual method of enabling finer detail to be seen is to move the 
object nearer to your eye, so it occupies a larger fraction of your total 
vision.  When you do this, you do not make the object larger, but you do 
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make its angular size increase (when the angle is measured at the eye).  
Unfortunately, this process has limits, as the human eye can only 
comfortably focus on objects more than 25cm away.  This distance is 
called the ‘distance of distinct vision’ d0.  The role of the magnifier is not 
so much to make the image bigger than a closely held object in angular 
terms, but to make it appear with the same angular size, but at a 
distance where the eye can focus on it without strain. 

The ray diagram for a magnifying lens is shown below.  This is a convex 
lens being used with an object distance u less than its focal length.  The 
image is therefore to the left of the lens, and in our equations (10-15) the 
image distance v is accordingly negative. 

 

The magnification of this device is defined as the angular size of the 
image at the lens (which we assume to be very close to your eye) 
divided by the angular size the image would have if it were placed 25cm 
from your eye (where you could focus comfortably).  We shall simplify 
the situation and design our lens to put the image exactly 25cm from the 
eye. In other words, we have set w so that it equals d0. In this case the 
magnification defined above will be the same as the ‘ordinary’ 
magnification (the ratio of the image size to object size). 

The reasoning following equation (10) shows that the magnification of 
this system is M = 1 – Pv = 1 + Pw where P is the power of the lens.  
Therefore if the object had height h0, the image would have height 
(1+Pw) h0.  This image is formed at distance d0.  If the object were 
actually placed this far away, it would still only have height h0.  
Accordingly the magnification is 1+Pw = 1+Pd0. 

5.3.2 Standard microscope 
The job of a microscope is to make small objects look large.  A simple 
microscope will have two lenses – objective and eyepiece.  The 
objective is close to the sample and forms a real, magnified (though 
inverted) image relatively close to the eyepiece.  The eyepiece then acts 
as a magnifier enabling this image to be seen at the distance of distinct 
vision. 

Focal length f 
Object dist u 

Image dist w = -v 

Image 
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By similar triangles, the ratio between the first image height and the 
object height (the magnification M0) will be equal to the tube length 
divided by the focal length of the objective lens.  The focal length of the 
objective is equal to 1/P0 where P0 is the power of the objective.  Thus 
M0 = L/f0 = LP0.  The eyepiece then magnifies this by a factor (1+Ped0) 
where Pe is the power of the eyepiece and d0 is the distance of distinct 
vision, as in the section on magnifiers (5.3.1).  The overall magnification 
is therefore LP0(1+Ped0), although we ought to write this as a negative 
number as the image is inverted. 

The action of enlarging the image spreads the light out, which makes it 
dimmer.  It is accordingly vital that the object is very well illuminated by a 
bright lamp. 

Ray optics are not the only consideration when designing a microscope.  
Light does also behave as a wave, and diffraction effects need to be 
kept to a minimum to ensure a clear image.  This is achieved by 
ensuring that the objective lens is significantly wider than the object.  Re-
arranging equation (23) in chapter 4, the lens must have a diameter of at 
least W = λL/s where L is the distance of the specimen from the 
objective and s is the size of the detail you wish to see in that specimen. 

5.3.3 Refracting telescope 
Unlike the magnifier and microscope, the principal aim of a telescope is 
not to make things appear larger.  If you were to look at the sky with an 
optical system with a magnification of 10 000, you could take very good 
pictures of the surface of the Moon, however when looking at the stars, 
even this magnification would not make them seem any larger (they are 
a very very long way away), but by magnifying you would make the 
images dimmer and might lose the ability to navigate the night sky.  After 
all, it is the patterns of the stars which help us find our way about and 
identify particular stellar objects – and a pattern requires more than one 
star to be visible at a given moment. 

The main object is to make the stars brighter, and this is done by using 
wide lenses to catch more light than possible with the naked eye.  A 

Tube length L 

Objective focal length f0 
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wide lens has a second benefit – it reduces the angle by which light 
diffracts on passing into the telescope and enables crisper images of 
distant objects to be formed than is possible with the naked eye.  Clarity 
is aided by a dose of magnification, but only by a factor of tens not 
thousands. 

A simple refracting telescope contains two lenses.  The first (the object 
lens) makes real images of the distant stars.  As the stars are so far 
away from the telescope, the light from each star is more or less parallel 
when it arrives at the lens.  Accordingly it will be focused to a point one 
focal length from the lens.  An eye lens then enables the astronomer to 
view this light comfortably. 

 

The magnification here is defined as α2/α1. Now α1 = h/F, while α2 = h/f,  
given that the initial and final beams of light are parallel.  It follows that 
the magnification will be F/f. 

5.3.4 General method for analysing optical systems 
In the section on thin lenses acting as one (5.2.3.3) it was stated that the 
approximations used there only worked if the distance between the 
lenses was small, and a promise was made to show a more general 
system of analysing optical systems which did not suffer this limitation.  
Now is the time to introduce a general method for analysing an optical 
system. 

We represent the ray at any point in the system with a vector 

  










h

r  

where h is the distance of the ray above the axis, and α is the angle (in 
radians) made by the ray to the axis.  When a ray passes some optical 
component (or even a region of empty space), the component acts on 
the vector to make a new one.  Each component is represented as a 
matrix C. 

Object lens focal length F 

Eye lens focal length f 

α1 
α2 First image height h 
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5.3.4.1 Light travelling a distance u in a uniform medium 

Our simplest component is no component at all – just passing through 
space.  This doesn’t change the angle, but the height above the axis 
does change – we have already used the equation uhh  01 .  In other 

words 

  




 uhhh '

 

where we use h’ and α’ to represent the new values of h and α. This can 
be written in matrix form as 

   rr' uC
huh

S



























or
10

1


. 

5.3.4.2 Boundaries between media 

A surface perpendicular to the axis joining a material of refractive index 
n1 to one of n2 causes changes no change to h, but α’ = n1 α / n2 as 
proved in section 5.2.1.  The matrix for this boundary is therefore 

   rr' 21
21

,or
0

01
nnC

h

nn

h
PB





























. 

A curved boundary of radius R can also be treated, where we start with 
equation (6).  Again, there is no change to h, but the angle is changed by 
a function which this time depends on α and also h. Written in matrix 
form, we have: 

   rr' 21

2

1

2

21 ,,or
01

nnRC
h

n

n

nR

nnh
CB


































. 

5.3.4.3 A complete system 

We now apply the matrix method to a complete system.  Our first system 
is a thin lens.  The light starts in air, goes through a boundary of radius 
R1 into a material of refractive index n, then goes through a boundary of 
radius R2 into air again.  So we begin with vector r.  First to act upon it is 
the boundary into the material CCB(R1,1,n), and second to act is the 
boundary out of the material CCB(R2,n,1).  The whole effect is given by 
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where P is defined in equation (8), and we have agreement with 
equations (7) and (9). 

The effect of a lens of thickness t could also be calculated: 
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By multiplying the matrices for each part of the system, we can form a 
matrix for any optical system by multiplying the matrices corresponding 
to each component. 

5.4 Questions 
1. Show that Fermat’s principle allows you to ‘derive’ the Law of Reflection.  

Assume that you have a mirror along the x-axis.  Let light start at point 
(X1,Y1) and end at point (X2,Y2).  Show that the least-time reflected route 
is the one which bounces off the mirror where angles of incidence and 
reflection will be equal. + 

2. Show that Fermat’s principle allows you to ‘derive’ Snell’s Law.  Assume 
that you have a material with refractive index 1 for y>0 (that is, above the 
x-axis), and refractive index n where y<0.  Show that the shortest time 
route from point (X1,Y1) to (X2,Y2), where Y1>0 and Y2<0, crosses the 
boundary at the point where sin i / sin r = n. + 

3. You are the navigator for a hiking expedition in rough ground.  Your 
company is very thirsty and tired, and your supplies have run out.  There 
is a river running East-West which is 4km South of your current position.  
Your objective is to reach the base camp (which is 2km South and 6km 
West of your current position), stopping off at the river on the way.  What 
is the quickest route to the camp via the river? + 
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4. You are the officer in charge of a food convoy attempting to reach a 
remote village in a famine-stricken country.  On your map, you see that 
50km to your East is a straight border (running North-South) between 
scrub land (over which you can travel at 15km/hr) and marsh (over which 
you can only travel at 5km/hr).  The village is 141km South-East of your 
current position.  What is the fastest route to reach the village? + 

5. Prove equation (13) by a graphical method.  Draw an axis, a convex 
lens, and an object.  Mark the object distance u, and a focal distance f to 
the right of the lens (but make sure that f<u).  Now draw two rays.  The 
first should start at the object, and pass straight through the centre of the 
lens and continue without bending (rays passing the centre of the lens 
pass a section with θ=0, and accordingly are not bent).  The second ray 
should start at the object and travel parallel to the axis until it reaches 
the lens.  At this point it should bend so it passes the focal point on the 
axis and then keeps going.  The image is where the two rays meet.  
Form two different equations for the ratio (image height)/(object height) 
using two sets of similar triangles, and eliminate the height ratio to form 
equation (13). 

6. People with ‘normal’ eyes can bring objects into focus on their retina 
providing the object is further away than 25cm.  Assuming that their 
retina is 2.0cm behind the lens, calculate the range of powers which the 
eye’s lens can adopt. 

7. A patient has eyesight which is perfectly corrected by contact lenses with 
a power of -1D.  Using the information from q6, calculate the range of 
object distances which can be viewed crisply by the patient without 
spectacles. 

8. Would your answer to q7 be significantly different if the patient preferred 
wearing spectacles whose lenses sat 2cm in front of the eye? 

9. Assume that a convex lens has been set up to form a sharp image of an 
object, where the object distance u, image distance v and lens power P 
are known.  What will be the effect on the image distance of placing a 
glass block (of refractive index n) of thickness t in between the object 
and the lens? Calculate the distance by which the image moves if 
originally u = v = 20cm, the glass has refractive index 1.50 and the block 
is 2.0cm thick. + 

10. Explain why the matrix for any optical system which produces an image 
must have a zero in its top right hand corner. 

11. Work out the matrix which is equivalent to a glass block of refractive 
index n and thickness t.  Don’t forget to include the boundaries with the 
air. 
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6 Hot Physics 
This section gives an introduction to the areas of physics known as 
thermodynamics and statistical mechanics.  These deal with the 
questions “What happens when things heat up or cool down?” and 
“Why?” respectively. 

We start with a statement that will be very familiar – but then find that it 
leads us into new territory when explored further. 

6.1 The Conservation of Energy 
You will be used to the idea that energy can neither be used up nor 
created – only transferred from one object to another, perhaps in 
different forms. 

For our purposes, this is stated mathematically as 

  dQ + dW = dU , (1) 

where ‘dX’ refers to ‘a small change in X’.   Put into words, this states: 
“Heat entering object + Work done on the object = the change in its 
internal energy.”  Internal energy means any form of stored energy in the 
object.  Usually this will mean the heat it has, and will be measured by 
temperature.  However if magnetic or electric fields are involved, U can 
also refer to electrical or magnetic potential energy. 

Given that the conservation of energy must be the starting point for a 
study of heat, it is called the First Law of Thermodynamics. 

Equation (1) can be applied to any object or substance.  The most 
straightforward material to think about is a perfect gas, and so we shall 
start there.  It is possible to generalize our observations to other 
materials afterwards. 

Imagine some gas in a cylinder with a piston of cross-sectional area A.  
The gas will have a volume V, and a pressure p.  Let us now do some 
work on the gas by pushing the piston in by a small distance dL.  The 
force required to push the piston F = p A, and so the work done on the 
gas is dW = F dL = p A dL .  Notice that AdL is also the amount by which 
the volume of the gas has been decreased.  If dV represents the change 
in volume, dV = -A dL.  Therefore dW = -p dV. 

For a perfect gas in a cylinder (or in fact in any other situation), the First 
Law can be written a bit differently as: 

  dQ = dU + p dV (2) 
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6.2 The Second Law 
While the First Law is useful, there are certain things it can never tell us.  
For example – think about an ice cube sitting on a dish in an oven.  We 
know what happens next – the ice cube melts as heat flows from oven to 
ice, warming it up until it reaches melting point.  However the First Law 
doesn’t tell us that.  As far as it is concerned it is just as possible for heat 
to flow from the ice to the oven, cooling the ice and heating the oven.  

We stumbled across our next law – called the second law of 
thermodynamics.  This can be stated in several ways, but we shall start 
with this: Heat will never flow from a cold object to a hotter object by 
itself. 

This helps us with the ice in the oven, but you may be wondering what 
the significance of the “by itself” is.  Actually heat can be transferred from 
a cold object to a hotter one – that is what fridges and air conditioning 
units do.  However they can only do it because they are plugged into the 
electricity supply.  If you are prepared to do some work – then you can 
get heat out of a cold object and into a hotter one, but as soon as you 
turn the power off and leave it to its own devices, the heat will start 
flowing the other way again. 

6.3 Heat Engines and Fridges 

Hot ‘reservoir’ - the 
atmosphere at temperature 
T(h) 

Cold ‘reservoir’ - the ice 
box at temperature T(c) 

Fridge 
Work dW provided by 
electric compressor 

dQ1 

dQ2 

 

The fridge is shown diagrammatically above.  It is a device which uses 
work dW (usually provided by an electric compressor) to extract heat 
dQ2 from the ice-box (cooling it down), and pump it out into the 
surroundings (warming them up).  However, by the conservation of 
energy, the amount of energy pumped out dQ1 is bigger than the amount 
of energy removed from the ice-box.  By convention dQ2>0, and dQ1<0, 
since heat flowing in is regarded as positive.  The First Law therefore 
states that dQ1 + dQ2 + dW = 0. 
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The fridge is a device that uses work to move heat from cold objects to 
hot.  The opposite of a fridge is a heat engine.  This allows heat to flow 
its preferred way – namely from hot to cold – but arranges it to do some 
work on the way.  Petrol engines, steam engines, turbo-generators and 
jet engines are all examples of heat engines. 

Hot ‘reservoir’ - the fire-box 
at temperature T(h) 

Cold ‘reservoir’ - the 
atmosphere at temperature 
T(c) 

Engine 
Work dW produced, 
drives electrical 
generator 

dQ1 

dQ2 

 

It was Carnot who realised that the most efficient heat engine of all was 
a ‘reversible’ heat engine.  In other words – one that got the same 
amount of work out of the heat transfer as would be needed to operate a 
perfect fridge to undo its operation.   

In order to do this, it is necessary for all the heat transfers (between one 
object and another) to take place with as small a temperature difference 
as possible.  If this is not done, heat will flow from hot objects to cold – a 
process which could have been used to do work, but wasn’t.  Therefore 
not enough work will be done to enable the fridge to return the heat to 
the hot object. 

Carnot therefore proposed that the ratio of heat coming in from the hot 
object to the heat going out into the cold object has a maximum for this 
most-efficient engine.  This is because the difference between heat in 
and heat out is the work done, and we want to do as much work as 
possible.  Furthermore, he said that this ratio must be a function of the 
temperatures of the hot and cold objects only. 

This can be stated as 

  ),( 21
2

1 TTf
dQ

dQ
  (3) 

where T1 is the temperature of the hot object, and T2 is that of the cold 
object.  More light can be shed on the problem if we stack two heat 
engines in series, with the second taking the heat dQ2 from the first (at 
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temperature T2), extracting further work from it before dumping it as heat 
(dQ3) into a yet colder object at temperature T3. 

The two heat engines separately and together give us the equations: 
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6.3.1 Thermodynamic Temperature 
However if g(T) is a function of the temperature alone, we might as well 
call g(T) the temperature itself.  This is the thermodynamic definition of 
temperature. 

To summarize: Thermodynamic temperature (T) is defined so that in a 
reversible heat engine, the ratio of heat extracted from the hot object 
(Q1) to the heat ejected into the cold object (Q2): 

  
2

1

2

1

T

T

Q

Q
  (5) 

The ‘kelvin’ temperature scale obtained using the gas laws satisfies this 
definition.  For this reason, the kelvin is frequently referred to as the unit 
of ‘thermodynamic temperature’. 

6.3.2 Efficiency of a Heat Engine 
The efficiency of a reversible heat engine can then be calculated.  We 
define the efficiency () to be the ratio of the work done (the useful 
output) to Q1 (the total energy input).  Therefore 

  
1

2

1

21

1

1
T

T

dQ

dQdQ

dQ

dW



 . (6) 

This, being the efficiency of a reversible engine, is the maximum 
efficiency that can be achieved.  A real engine will fall short of this goal.  
Notice that for a coal-fired power station, in which T1 (the temperature of 
the boiler) is frequently 840K, and T2 (the temperature of the stream 
outside) is 300K; the maximum possible efficiency is 

  %64
840

300
1  . 
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In practice the water leaves the turbo generator at 530K, and so the 
efficiency can’t go any higher than 

  %37
840

530
1  . 

The design of modern large power stations is such that the actual 
efficiency is remarkably close to this value. 

6.4 Entropy 
Now we need to take a step backwards before we can go forwards.  
Look back at the definition of thermodynamic temperature in equation 
(5).  It can be rearranged to state 

  0
2

2

1

1

2

2

1

1 
T

dQ

T

dQ

T

dQ

T

dQ
   REVERSIBLE. (7) 

Remember that this is for the ideal situation of a reversible process – as 
in a perfect fridge or heat engine.  Suppose, then, that we start with 
some gas at pressure p and volume V.  Then we do something with it 
(squeeze it, heat it, let it expand, or anything reversible), and finally do 
some more things to it to bring it back to pressure p and volume V.  The 
list of processes can be broken up into tiny stages, each of which saw 
some heat (dQ) entering or leaving the system, which was at a particular 
temperature T.  The only difference between this situation, and that in (7) 
is that there were only two stages in the process for the simpler case.  
The physics of (7) should still apply, no matter how many processes are 
involved.  Therefore providing all the actions are reversible we can write 

  00
cycle complete

 
T

dQ

T

dQ
  REVERSIBLE (8) 

where the circle on the integral implies that the final position (on a p,V 
graph) is the same as where the gas started. 

Now suppose that there are two points on the (p,V) graph which are of 
interest to us, and we call them A and B.  Let us go from A to B and then 
back again (using a different route), but only using reversible processes.  
We call the first route I, and the second route II.  Equation (8) tells us 
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In other words the integral of dQ/T between the two points A and B is the 
same, no matter which reversible route is chosen.  This is a very special 
property of a function – we label dQ/T as a function of state, and call it 
the entropy (S). 

This means that the current entropy of the gas, like pressure, volume 
and temperature, is only a function of the state that the gas is in now – 
and does not depend on the preparation method. 

6.5 Irreversible Processes and the Second Law 

We must stress that entropy is only given by  TdQ  when the integral is 

taken along reversible processes in which there is no wastage of heat.  
Heat is wasted when it is allowed to flow from a hot object to a cold one 
without doing any work on the journey.  This would be irreversible, since 
you could only get the heat back into the hot object if you expended 
more energy on it. 

Let us make an analogy.  Reversible processes are like a world in which 
purchasing prices and selling prices are the same.  If you started with 
£100, and spent it in various ways, you could sell the goods and end up 
with £100 cash at the end. 

Irreversible processes are like the real world in that a trader will want to 
sell you an apple for more than she bought it for.  Otherwise she won’t 
be able to make a profit.  If you started with £100, and spent it, you 
would never be able to get the £100 back again, since you would lose 
money in each transaction.  You may end up with £100 ‘worth of goods’, 
but you would have to be satisfied with a price lower than £100 if you 
wanted to sell it all for cash. 

Let us now return to the physics, and the gas in the piston.  What does 
irreversibility mean here?  We haven’t lost any energy – the First Law 
has ensured that.  But we have lost usefulness. 

Equation (8) tells us that if we come back to where we started, and only 
use reversible processes on the way, the total entropy change will be 
zero.  There is another way of looking at this, from the point of view of a 
heat engine. 
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Let us suppose that the temperature of the boiler in a steam engine is 
TA.  In a perfect heat engine, the cylinder will receive the steam at this 
temperature. Suppose Q joules of heat are transferred from boiler to 
cylinder.  The boiler loses entropy Q/TA, the cylinder gains entropy Q/TA, 
and the total entropy remains constant. 

Now let us look at a real engine.  The boiler must be hotter than the 
cylinder, or heat would not flow from boiler to cylinder!  Suppose that the 
boiler is still at TA, but the cylinder is at TC.  We have now let 
irreversibility loose in the system, since the heat Q now flows from hot to 
cooler without doing work on the way. 

What about the entropy?  The boiler now loses Q/TA to the connecting 
pipe16, but the cylinder gains Q/TC from it.  Since TC<TA, the cylinder 
gains more entropy than the boiler lost. 

This is an alternative definition of the Second Law.  Processes go in the 
direction to maximize the total amount of entropy. 

6.6 Re-statement of First Law 
For reversible processes, dW = -p dV, and dQ = T dS.  Therefore the 
First Law (1), can be written as 

  T dS = dU + p dV  . (9) 

We find that this equation is also true for irreversible processes.  This is 
because T, S, U, p and V are all functions of state, and therefore if the 
equation is true for reversible processes, it is true for all processes.  
However care must be taken when using it for irreversible processes, 
since TdS is no longer equal to the heat flow, and pdV is no longer equal 
to the work done. 

6.7 The Boltzmann Law 
The Boltzmann Law is simple to state, but profound in its implications. 

  Probability that a particle has energy E kTEe   (10) 

                                            

16 What’s the pipe got to do with it?  Remember that we said that change in entropy dS is only 
given by dQ/T for reversible processes.  The passing of Q joules of heat into the pipe is done 
reversibly (at temperature TA), so we can calculate the entropy change.  Similarly the passing 
of Q joules of heat from pipe to cylinder is done reversibly (at TC), so the calculation is 
similarly valid at the other end.  However something is going on in the pipe which is not 
reversible – namely Q joules of heat passing from higher to lower temperature.  Therefore we 
mustn’t apply any dS = dQ/T arguments inside the pipe. 
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where k is the Boltzmann constant, and is about 1.38×10-23 J/K.  We 
also find that the probability that a system has energy E or greater is 
also proportional to e-E/kT (with a different constant of proportionality). 

There is common sense here, because (10) is saying that greater 
energies are less likely; and also that the higher the temperature, the 
more likely you are to have higher energies. 

Let’s give some examples: 

6.7.1 Atmospheric Pressure 
The pressure in the atmosphere at height h is proportional to the 
probability that a molecule will be at that height, and is therefore 
proportional to e-mgh/kT.  Here, the energy E, is of course the gravitational 
potential energy of the molecule – which has mass m. 

The proof of this statement is in several parts.  Firstly we assume that all 
the air is at the same temperature.  This is a dodgy assumption, but we 
shall make do with it.  Next we divide the atmosphere into slabs (each of 
height dh and unit area), stacked one on top of the other.  Each slab has 
to support all the ones above it.  From the Gas Law (pV = NkT where N 
is the number of molecules under consideration), and the definition of 
density (Nm=V) we can show that =pm/kT.  Furthermore, if you go up 
by a small height dh, the pressure will reduce by the weight of one slab – 
namely gdh.  Therefore 
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where p0 is the pressure at ground level.  We see that the Boltzmann 
Law is obeyed. 

6.7.2 Velocity distribution of molecules in a gas 
The probability that a molecule in the air will have x-component of its 
velocity equal to ux is proportional to exp(-mux2/2kT).  Here the energy E 
is the kinetic energy associated with the x-component of motion. 

From this statement, you can work out the mean value of ux2, and find it 
to be: 
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The mean kinetic energy is given by 

    kTuuumumK zyx 2
3222

2
12

2
1   (13) 

so the internal energy of a mole of gas (due to linear motion) is 

  RTkTNKNU AA 2
3

2
3   (14) 

where kNR A  is the gas constant.  From this it follows that the molar 

heat capacity of a perfect gas17, RCV 2
3 . 

6.7.3 Vapour Pressure 
The probability that a water molecule in a mug of tea has enough (or 
more than enough) energy to leave the liquid is proportional to exp(-
EL/kT) where EL is the energy required to escape the attractive pull of 
the other molecules (latent heat of vaporization per molecule). 

6.7.4 Justification of Boltzmann Law 
In this section, we introduce some statistical mechanics to give a taste of 
where the Boltzmann law comes from. 

Suppose that you have N atoms, and P ‘packets’ of energy to distribute 
between them.  How will they be shared?  In statistical mechanics we 
assume that the energy will be shared in the most likely way. 

In a simple example, we could try sharing 4 units of energy (P=4) among 
7 atoms (N=7).  Because the individual energy units are 
indistinguishable (as are the 7 atoms), the possible arrangements are: 

 1 atom with 4 energy units, 6 atoms with none 
 1 atom with 3 energy units, 1 with 1, 5 with none 
 2 atoms with 2 energy units, 5 with none 
 1 atom with 2 energy units, 2 with 1, 4 with none 
 4 atoms with 1 energy unit, 3 with none. 

These are said to be the five macrostates of the system.  We can work 
out how likely each one is to occur if the energy is distributed randomly 
by counting the ways in which each macrostate could have happened.   

                                            

17 This is the heat capacity due to linear motion.  For a monatomic gas (like helium), this is the 
whole story.  For other gases, the molecules can rotate or vibrate about their bonds as well, 
and therefore the heat capacity will be higher. 
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For example, in the first case (all of the energy is given to one of the 
atoms), there are seven ways of setting it up – because there are seven 
atoms to choose from.   

In the second case, we have to choose one atom to take 3 units (7 to 
choose from), and then choose one from the remaining six to take the 
remaining unit.  Therefore there are 76 = 42 ways of setting it up.   

Similarly we can count the ways of rearranging for the other 
macrostates18: 

 1 atom with 4 energy units, 6 atoms with none 7 ways 
 1 atom with 3 energy units, 1 with 1, 5 with none 42 ways 
 2 atoms with 2 energy units, 5 with none 21 ways 
 1 atom with 2 energy units, 2 with 1, 4 with none 105 ways 
 4 atoms with 1 energy unit, 3 with none. 35 ways 

We can see that there is one macrostate clearly in the lead – where 4 
atoms have no energy, 2 atoms have one energy unit, and 1 atom has 
two energy units.  This macrostate is interesting because there is a 
geometric progression in the number of atoms (4,2,1) having each 
amount of energy.   

It can be shown that the most likely macrostate will always be the one 
with (or closest to) a geometric progression of populations.19  In other 

                                            

18 The calculation is made more straightforward using the formula  !!!! 210 nnnNW   

where W is the number of ways of setting up the macrostate, n0 is the number of atoms with 
no energy, n1 is the number of atoms with one unit of energy, and so on.   

Here is one justification for this formula: N! gives the total number of ways of choosing the 
atoms in order.  The division by n0! prevents us overcounting when we choose the same 
atoms to have zero energy in a different order.  A similar reason holds for the other terms on 
the denominator. 

Alternatively, W = the number of ways of choosing n0 atoms from N  the number of ways of 
choosing the n1 from the remaining (Nn0)  the number of ways of choosing the n2 from the 
remaining (Nn0n1) and so on.  Thus 
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19 To show this, start with a geometric progression (in other words, say i
i Afn   where f is 

some number), and write out the formula for W.  Now suppose that one of the atoms with i 
units of energy gives a unit to one of the atoms with j units.  This means that ni and nj have 
gone down by 1, while ni1 and nj+1 have each gone up by one.  By comparing the old and 
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words, assuming that this macrostate is the true one (which is the best 
bet)20, then the fraction of atoms with n energy units is proportional to 
some number to the power n.  The actual fraction is given by the 
formula     nPNNP   11 1 .  Assuming that the mean number of 
energy units per atom is large (so that we approximate the continuous 
range of values that the physical energy can take), this means that 

PNePN 1 , and so the probability that an atom will have n units of 

energy is proportional to PNne . 

Suppose that each packet contains  joules of energy.  Then the energy 
of one atom (with n packets) is E = n, and the probability that our atom 
will have energy E as PNEe .  The mean energy per atom is P.  Now 
we have seen that the average energy of an atom in a system is about 
kT, where T is the temperature in kelvins, and so it should not seem odd 
that the Boltzmann probability is kTEe  where we replace one expression 
for the mean energy per atom P, with another kT. 

6.8 Perfect Gases 
All substances have an equation of state.  This tells you the relationship 
between volume, pressure and temperature for the substance.  Most 
equations of state are nasty, however the one for an ideal, or perfect, 
gas is straightforward to use.  It is called the Gas Law.   This states that 

  p V = n R T (18) 

  p V = N k T (19) 

where p is the pressure of the gas, V its volume, and T its absolute (or 
thermodynamic) temperature.  This temperature is measured in kelvins 
always.  There are two ways of stating the equation: as in (18), where n 
represents the number of moles of gas; or as in (19), where N 
represents the number of molecules of gas.  Clearly N=NAn where NA is 
the Avogadro number, and therefore R=NAk.   

You can adjust the equation to give you a value for the number density 
of molecules.  This means the number of molecules per cubic metre, and 
is given by N/V = p/kT.  The volume of one mole of molecules can also 
be worked out by setting n=1 in (18):  

                                                                                                                     

new values of W, you can show that the new W is smaller, and that therefore the old 
arrangement was the one with the biggest W. 

20 The bet gets better as the number of atoms increases.  The combination (4,2,1) was the 
most popular in our example of N=7, P=4, however if you repeated the exercise with N=700 
and P=400, you would find a result near (400,200,100) almost a certainty.  In physics we deal 
with huge numbers of atoms in matter, so the gambling pays off. 
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p

RT
Vm     . (20) 

You can adjust this equation to give you an expression for the density.  If 
the mass of one molecule is m, and the mass of a mole of molecules 
(the R.M.M.) is M, we have 
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
. (21) 

Please note that this is the ideal gas law.  Real gases will not always 
follow it.  This is especially true at high pressures and low temperatures 
where the molecules themselves take up a good fraction of the space.  
However at room temperature and atmospheric pressure, the Gas Law 
is a very good model. 

6.8.1 Heat Capacity of a Perfect Gas 
We have already shown (in section 5.7.2) that for a perfect gas, the 
internal energy due to linear motion is RT2

3  per mole.  If this were the 

only consideration, then the molar heat capacity would be R2
3 .  However 

there are two complications 

6.8.1.1 The conditions of heating 

In thermodynamics, you will see molar heat capacities written with 
subscripts – CP and CV.  They both refer to the energy required to heat a 
mole of the substance (M kilograms) by one kelvin.  However the energy 
needed is different depending on whether the volume or the pressure is 
kept constant as the heating progresses. 

When you heat a gas at constant volume, all the heat going in goes into 
the internal energy of the gas (dQV = dU).  

When you heat a gas at constant pressure, two things happen.  The 
temperature goes up, but it also expands.  In expanding, it does work on 
its surroundings.  Therefore the heat put in is increasing both the internal 
energy and is also doing work (dQP = dU + p dV).   

Given that we know the equation of state for the gas (18), we can work 
out the relationship between the constant-pressure and constant-volume 
heat capacities.  In these equations we shall be considering one mole of 
gas. 
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6.8.1.2 The type of molecule 

Gas molecules come in many shapes and sizes.  Some only have one 
atom (like helium and argon), and these are called monatomic gases.  
Some gases are diatomic (like hydrogen, nitrogen, oxygen, and 
chlorine), and some have more than two atoms per molecule (like 
methane). 

The monatomic molecule only has one use for energy – going places 
fast.  Therefore its internal energy is given simply by kT2

3 , and so the 

molar internal energy is RTU 2
3 .  Therefore, using equation (22), we 

can show that RCV 2
3  and RRCC VP 2

5 . 

A diatomic molecule has other options open to it.  The atoms can rotate 
about the molecular centre (and have a choice of two axes of rotation).  
They can also wiggle back and forth – stretching the molecular bond like 
a rubber band.  At room temperature we find that the vibration does not 
have enough energy to kick in, so only the rotation and translation (the 
linear motion) affect the internal energy. 

Each possible axis of rotation adds kT2
1  to the molecular energy, and so 

we find that for most diatomic molecules, RCV 2
5  and RCP 2

7 . 

6.8.1.3 Thermodynamic Gamma 

It turns out that the ratio of VP CC  crops up frequently in equations, and 

is given the letter .  This is not to be confused with the  in relativity, 
which is completely different. 

Using the results of our last section, we see that =5/3 for a monatomic 
gas, and =7/5 for one that is diatomic. 

6.8.2 Pumping Heat 
If a healthy examiner expects you to know about ideal gases and 
thermodynamics – you can bet that he or she will want you to be able to 
do thermodynamics with an ideal gas.  In this section we show you how 
to turn a perfect gas (in a cylinder) into a reversible heat engine, and in 
doing so we will introduce the techniques you need to know. 
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6.8.2.1 Isothermal Gas Processes 

As an introduction, we need to know how to perform two processes.  
Firstly we need to be able to get heat energy into or out of a gas without 
changing its temperature.  Remember that we want a reversible heat 
engine, and therefore the gas must be at the same temperature as the 
hot object when the heat is passing into it.  Any process, like this, which 
takes place at a constant temperature is said to be isothermal. 

The Gas Law tells us (18) that pV=nRT, and hence that pV is a function 
of temperature alone (for a fixed amount of gas).  Hence in an isothermal 
process 

  constpV  .     ISOTHERMAL (23) 

Using this equation, we can work out how much we need to compress 
the gas to remove a certain quantity of heat from it.  Alternatively, we 
can work out how much we need to let the gas expand in order for it to 
‘absorb’ a certain quantity of heat.  These processes are known as 
isothermal compression, and isothermal expansion, respectively. 

Suppose that the volume is changed from V1 to V2, the temperature 
remaining T.  Let us work out the amount of heat absorbed by the gas.  
First of all, remember that as the temperature is constant, the internal 
energy will be constant, and therefore the First Law may be stated 
dQ=pdV.  In other words, the total heat entering the gas may be 
calculated by integrating pdV from V1 to V2: 

   
1

22
1 lnln

V

V
nRTVnRTdV

V

nRT
pdVQ V

V   . (24) 

This equation describes an isothermal (constant temperature) process 
only.  In order to keep the temperature constant, we maintain a good 
thermal contact between the cylinder of gas and the hot object (the boiler 
wall, for example) while the expansion is going on. 

6.8.2.2 Adiabatic Gas Processes 

The other type of process you need to know about is the adiabatic 
process.  These are processes in which there is no heat flow (dQ=0), 
and they are used in our heat engine to change the temperature of the 
gas in between its contact with the hot object and the cold object.  
Sometimes this is referred to as an isentropic process, since if dQ=0 for 
a reversible process, TdS=0, and so dS=0 and the entropy remains 
unchanged.21 

                                            

21 While the terms ‘isentropic’ and ‘adiabatic’ are synonymous for a perfect gas, care must be 
taken when dealing with irreversible processes in more advanced systems.  In this context dQ 
is not equal to TdS.  If dQ=0, the process is said to be adiabatic: if dS=0, the process is 
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Before we can work out how much expansion causes a certain 
temperature change, we need to find a formula which describes how 
pressure and volume are related in an adiabatic process.  Firstly, the 
First Law tells us that if dQ=0, then 0 = dU + p dV.  We can therefore 
reason like this for n moles of gas: 

  
pdVdTnC

pdVdU

V 
0

 

Now for a perfect gas, nRT=pV, therefore VdppdVnRdT  .  So we 
may continue the derivation thus: 
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Integrating this differential equation gives 
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CpV
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Equation (26) is our most important equation for adiabatic gas 
processes, in that it tells us how pressure and volume will be related 
during a change. 

We now come back to our original question: what volume change is 
needed to obtain a certain temperature change?  Let us suppose we 
have a fixed amount of gas (n moles), whose volume changes from V1 to 
V2.  At the same time, the temperature changes from T1 to T2.  We may 
combine equation (26) with the Gas Law to obtain: 

                                                                                                                     

isentropic.  Clearly for a complex system, the two conditions will be different.  This arises 
because in these systems, the internal energy is not just a function of temperature, but also of 
volume or pressure. 
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6.8.2.3 A Gas Heat Engine 

We may now put our isothermal and adiabatic processes together to 
make a heat engine.  The engine operates on a cycle: 

1. The cylinder is attached to the hot object (temperature Thot), and 
isothermal expansion is allowed (from V1 to V2) so that heat Q1 is 
absorbed into the gas. 

2. The cylinder is detached from the hot object, and an adiabatic 
expansion (from V2 to V3) is allowed to lower the temperature to 
that of the cold object (Tcold). 

3. The cylinder is then attached to the cold object.  Heat Q2 is then 
expelled from the cylinder by an isothermal compression from V3 to 
V4. 

4. Finally, the cylinder is detached from the cold object.  An adiabatic 
compression brings the volume back to V1, and the temperature 
back to Thot. 

Applying equation (24) to the isothermal processes gives us 
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Similarly, applying equation (27) to the adiabatic processes gives us 
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Combining equations (28) and (29), gives us 
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where the minus sign reminds us that Q2<0, since this heat was leaving 
the gas.  

To summarize this process, we have used a perfect gas to move heat 
from a hot object to a colder one.  In doing this, we notice less heat was 
deposited in the cold object than absorbed from the hot one.  Where has 
it gone?  It materialized as useful work when the cylinder was allowed to 
expand.  Had the piston been connected to a flywheel and generator, we 
would have seen this in a more concrete way. 

We also notice that we have proved that the kelvin scale of temperature, 
as defined by the Gas Law, is a true thermodynamic temperature since 
equation (30) is identical to (5). 

6.9 Radiation of Heat 
And finally... there is an extra formula that you will need to be aware of.  
The amount of heat radiated from an object is given by: 

  4ATP   (31) 

P is the power radiated (in watts), A is the surface area of the object (in 
m2), and T is the thermodynamic temperature (in K). 

The constant  is called the Stefan-Boltzmann constant, and takes the 
value of 5.671×10-8 W/(m2K4). 

The amount radiated will also depend on the type of surface.  For a 
perfect matt black (best absorber and radiator), the object would be 
called a black body, and the emissivity  would take the value 1.  For a 
perfect reflector, there is no absorption, and no radiation either, so =0. 

6.10 Questions 
1. Calculate the maximum efficiency possible in a coal fired power station, 

if the steam is heated to 700°C and the river outside is at 7°C. 

2. Mechanical engineers have been keen to build jet engines which run at 
higher temperatures.  This makes it very difficult and expensive to make 
the parts, given that the materials must be strong, even when they are 
almost at their melting point.  Why are they making life hard for 
themselves? 
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3. Two insulated blocks of steel are identical except that one is at 0°C, 
while the other is at 100°C.  They are brought into thermal contact.  A 
long time later, they are both at the same temperature.  Calculate the 
final temperature; the energy change and entropy change of each block 
if (a) heat flows by conduction from one block to the other, and if (b) heat 
flows from one to the other via a reversible heat engine. ++ 

4. There is a ‘rule of thumb’ in chemistry that when you raise the 
temperature by 10°C, the rate of reaction roughly doubles.  Use 
Boltzmann’s Law to show that this means the activation energy of 
chemical processes must be of order 1019J. + 

5. The amount of energy taken to turn 1kg of liquid water at 100°C into 1kg 
of steam at the same temperature is 2.26 MJ.  This is called the latent 
heat of vaporization of water.  How much energy does each molecule 
need to ‘free itself’ from the liquid?   

6. By definition, the boiling point of a liquid is the temperature at which the 
saturated vapour pressure is equal to atmospheric pressure (about 
100kPa).  Up a mountain, you find that you can’t make good tea, 
because the water is boiling at 85°C.  What is the pressure?  You will 
need your answer to q4. + 

7. Estimate the altitude of the mountaineer in q5.  Assume that all of the air 
in the atmosphere is at 0°C. + 

8. Use the Gas Law to work out the volume of one mole of gas at room 
temperature and pressure (25°C, 100kPa). 

9. What fraction of the volume of the air in a room is taken up with the 
molecules themselves?  Make an estimate, assuming that the molecules 
are about 1010m in radius. 

10. Estimate a typical speed for a nitrogen molecule in nitrogen at room 
temperature and pressure.  On average, how far do you expect it to 
travel before it hits another molecule?  Again, assume that the radius of 
the molecule is about 1010m. ++ 

11. The fraction of molecules (mass m each) in a gas at temperature T 

which have a particular velocity (of speed u) is proportional to kTmue 2/2 , 
as predicted by the Boltzmann law.  However the fraction of molecules 

which have speed u is proportional to kTmueu 2/2 2 .  Where does the u2 
come from? ++ 

12. One litre of gas is suddenly squeezed to one hundredth of its volume.  
Assuming that the squeezing was done adiabatically, calculate the work 
done on the gas, and the temperature rise of the gas.  Why is the 
adiabatic assumption a good one for rapid processes such as this? 
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13. A water rocket is made using a 2 litre plastic drinks bottle.  An amount of 
water is put into the bottle, and the stopper is put on.  Air is pumped into 
the bottle through a hole in the stopper.  When the pressure gets to a 
certain level, the stopper blows out, and the pressure of the air in the 
bottle expels the water.  If the bottle was standing stopper-end 
downwards, it flies up into the air.  If you neglect the mass of the bottle 
itself, what is the optimum amount of water to put in the bottle if you want 
your rocket to (a) deliver the maximum impulse, or (b) rise to the 
greatest height when fired vertically. ++ 
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7 Sparks & Generation 

7.1 Electrostatics – when things are still 
The fundamental fact of electrostatics will be familiar to you – opposite 
charges attract: like charges repel.  As a physicist it is not enough to 
know this, we also want to know how big the force is.  It turns out that 
the equations describing the force, energy, potential and so on are very 
similar mathematically to the equations describing gravitational 
attraction. 

Using the symbols F for force, U for potential energy, V for potential and 
E for field, we have the equations: 
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Notice that the symbols are slightly different for gravity – field is now 
given E rather than g, and in consequence we have to use another letter 
for energy – hence our choice of U.  Here we have put a charge Q at the 
origin, and we measure the quantities associated with a small ‘test’ 
charge q at distance R.  Notice that we do not have a minus sign in front 
– this allows like charges to repel rather than attract (whereas in gravity, 
positive mass attracts positive mass [and we have never found any 
lumps of negative mass – if we did this would upset a lot of our 
thinking]).  Also, in place of the G of gravity, we have the constant 

041  which is about 1020 times bigger.  No wonder the theoreticians 

talk of gravity as a weaker force! 

Now, you may wonder, why the factor of 4?  This comes about, 
because the equations above are not the nicest way of describing 
electrostatic forces.  They are based on the ‘Coulomb Force Law’, which 
is the first equation in (1) – however there is another, equivalent, way of 
describing the same physics, and it is called Gauss’ Law of 
Electrostatics.  This Gauss Law is on the Olympiad syllabus, and you will 
find it useful because it will simplify your electrical calculations a lot. 
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7.1.1 Gauss Law of Electrostatics 
Firstly, let us say what the law is.  Then we will describe it in words, and 
then prove that it is equivalent to the Coulomb Law.  Finally, we will 
show its usefulness in other calculations. 

   
S

Q

0
dSE  (2) 

What does this mean?  Firstly let us look at the individual symbols.  S is 
a closed surface (that is what the circle on the integral sign means) – like 
the outer surface of an apple, a table, or a doughnut – but not the outer 
surface of a bowl (which ends at a rim).  dS is a small part of the 
surface, with area dS, and is a vector pointing outward, perpendicular to 
the surface at that point.  Q is the total electric charge contained inside 
the surface S. Finally, the vector E is the electric field (in volts per metre) 
– where the vector points in the direction a positive charge would be 
pulled. 

The odd looking integral tells us to integrate the dot product of E with dS 
(a normal vector to the surface) around the complete surface.  This may 
sound very foreign, strange, and difficult, but let us give some examples. 

First of all, suppose S is a spherical surface of radius R, with one charge 
(+Q) at the centre of the surface.  Assuming there are no other charges 
nearby, the field lines will be straight, and will stream out radially from 
the centre.  Therefore E will be parallel to dS, and the dot product will 
simply be E dS – the product of the magnitudes.  Now the size of E must 
be the same all round the surface, by symmetry.  Therefore 

  24 REdSEdSE
SSS

  dSE  (3) 

since the surface area of a sphere is given by 4R2.  Now by Gauss’ 
Law, this must equal 0Q .  Putting the two equations together gives us 
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in agreement with Coulomb’s Law. 

Similarly we may find the field at a distance R from a wire that carries a 
charge  per metre – spread evenly along the wire – something which 
Coulomb’s Law could do, but would need a horrendous integral to do it. 

This time, our surface is a cylinder, one metre long, with the wire running 
down its axis.  The cylinder has radius R.  First, notice that the field lines 
will run radially out from the wire.  This has the consequence that the two 
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flat ends of the cylinder do not count in the integral.  Think about this for 
a moment, because this is important.  The vector dS for these ends will 
point normal to the surface – that means parallel to the wire.  The vector 
E, on the other hand points outward.  Therefore E is perpendicular to dS, 
and the dot product is zero. 

Only the curved surface counts.  Again, E will have the same magnitude 
at all points on it because of symmetry, and E will be parallel to dS on 
this surface.  Once again, we have 

  RLEdSEdSE
ScurvedScurvedS

2  dSE  (5) 

where L is the length of the cylinder, and hence 2RL is its curved 
surface area.  By Gauss’ Law, this must be equal to 00  LQ  , and 

so 

  
R

E
02


 . (6) 

We notice that for a line charge, the “inverse square” of the Coulomb 
Law has become an “inverse, not squared” law. 

Before moving on, let us make two more points.  Firstly, we have not 
proved the equivalence of Gauss’ Law and Coulomb’s Law – we have 
only shown that they agree in the case of calculating the field around a 
fixed, point charge.  However the two can be proved equivalent – but the 
proof is a bit involved, and is best left to first (or second) year university 
courses. 

Secondly, let us think about a surface S which is entirely inside the same 
piece of metal.  E will be zero within a metal, because any non-zero E 
(i.e. voltage difference) would cause a current to flow until the E were 
zero.  Therefore a surface entirely within metal can contain no total 
charge! 

Impossible, I hear you cry!  Let us take a hollow metal sphere, with a 
charge +Q at the centre of the cavity.  How can the enclosed charge be 
zero – surely it’s +Q!  Oh, no it isn’t.  Actually the total enclosed charge 
is zero, and this enclosed charge is made up of +Q at the middle of the 
cavity, and –Q induced on the inside wall of the hollow sphere!  If the 
sphere is electrically isolated, and began life uncharged, there must be a 
+Q charge somewhere on the metal, and it sits on the outer surface of 
the sphere. 

7.1.2 Capacitors 
A capacitor is a device that stores charge.  To be more precise, a 
capacitor consists of two conducting plates, with insulating space 



  Revision April 2017 

 Page 106 

between them.  When the positive plate carries charge +Q, an equal 
amount of negative charge is stored on the other.  If certain insulating 
materials are used to separate the plates (instead of air or vacuum), the 
amount of charge that can be stored increases considerably.  The 
charge stored is proportional to the potential difference across it, and we 
call the constant of proportionality the capacitance. 

Gauss’ Law gives us a wonderful way to calculate the capacitance of 
simple capacitors, and we will look at the calculation for a parallel plate 
capacitor. 

7.1.2.1 Parallel Plate Capacitor 

At its simplest, a capacitor is shown in the figure below.  The two plates 
are square, and parallel.  Each has area A and the distance between 
them is denoted L.  Let’s work out the capacitance.  To do this, we first 
suppose that there were a charge Q stored.  In other words, there is a 
charge –Q on the top plate, and +Q on the bottom plate.  We can work 
out the electric field in the gap using Gauss’ Law.  We draw a 
rectangular box-shape surface, with one of its faces parallel to, but 
buried in the bottom plate, and the opposite face in the middle of the 
gap. 

Separation L 
 
Voltage 
difference V 

Area A 

 

When working out the surface integral  
S

dSE  , only this face in the 

middle of the gap counts.  The face buried in the metal of the plate has 
E=0, while the other four surfaces’ normals are perpendicular to the field.  
Therefore 

  AE
Q

S




 dSE
0

. (7) 

We next work out the voltage.  This is not hard, as by analogy from 
gravitational work (chapter 1, equation 16) 
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  Field = - d(Potential)/d(distance) 

  E = -dV/dx (8) 

Here, E is constant and uniform throughout the inter-plate gap, and so 
V=Ex+c where c is a constant of integration.  Thus the voltage difference 
between the plates can be calculated; and from this the capacitance can 
be worked out. 
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We ought to give a word of caution at this point.  In a real parallel plate 
capacitor, the field near the edge of the plates will not point directly from 
one plate to the other, but will ‘bow out’ a bit.  Therefore the equation 
given above is only true when these ‘edge effects’ are ignored.  It turns 
out that the equation is pretty good providing that L is much smaller than 
both of the linear dimensions of the plates. 

The equation also allows you to see the effects of wiring capacitors in 
series or parallel.  When two identical capacitors, each of capacitance C, 
are connected together in parallel, the overall area A is doubled, so the 
capacitance of the whole arrangement is 2C.  On the other hand if the 
capacitors are connected in series, the result is one capacitor with twice 
the gap thickness L.  Therefore the overall capacitance is C/2. 

7.1.2.2 Decay of Charge on Capacitor 

We next come to the case where a capacitor is charged to voltage V 
(that is, a voltage V across the plates), and then connected in a simple 
circuit with a resistor R.  How long will it take to discharge? 

To work this out, we need to use our characteristic equations for 
capacitor and resistor.  For the capacitor V=Q/C, for the resistor V=IR.  
To solve the circuit we need to clarify the relationship between Q and I. 

+Q 
 
-Q 

I 

 

Here we need to take care.  Depending on how the circuit has been 
drawn, either I=dQ/dt or I=-dQ/dt.  That is why it is essential that you 
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include in your circuit diagrams arrows to show the direction of current 
flow for I>0, and which plate of the capacitor is the +ve one.  Here a 
positive I will discharge the capacitor, so I=dQ/dt. 

The voltage across the capacitor is the same as that across the resistor, 
so  
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dt
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. (10) 

This differential equation can be solved with an exponential solution: 

  RCteQtQ  0)(  (11) 

where Q0 was the initial charge on the capacitor after it was charged up.  
Given that the voltage across the capacitor V(t)=Q(t)/C, the time 
dependence of the voltage obeys a similar equation.  The constant RC is 
known as the time constant, and it is the time taken for the voltage (or 
charge) to fall by a factor e (approx 2.7). 

7.1.2.3 Energy considerations 

Next, we need to know how much energy has been stored in a capacitor, 
if its voltage is V and its capacitance C.  The energy is actually ‘stored’ in 
the electric field between the plates – but more of this later. 

To work the energy out, we charge a capacitor up from scratch (initial 
charge = 0), and continually measure the current flowing, and the 
voltage across it.  The energy stored must be given by 
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Given that the energy stored must be zero when V=0, and there is no 
electric field in the gap, this fixes the constant of integration as zero, and 
we obtain the fact that energy stored = half the capacitance × the square 
of the voltage across the gap.  You could equally well say that the 
energy is given by half the charge multiplied by the voltage. 

Before we leave this formula, let us do some conjuring tricks with this 
energy, assuming that the capacitor is a simple parallel plate device: 
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thus the energy stored per unit volume of gap is 2
02

1 E .  Although we 

have only shown this to be true for a perfect parallel plate capacitor, it is 
possible to make any electric field look like rows and columns of parallel 
plate capacitors arranged like a mosaic, and from this the proof can be 
generalized to all electric fields. 

7.1.2.4 Polarization 

When we introduced capacitors, we mentioned that the capacitance can 
be raised by inserting insulating stuff into the gap.  How does this work?  
Look at the diagram below.  The stuff in the middle contains atoms, 

which have positive and 
negative charges within 
them.   

When the plates are 
charged, as shown, this pulls 
the nuclei of the stuff to the 
right, and the electrons of the 
atoms to the left.  The left 

plate now has a blanket of negative charge, and the right plate has a 
blanket of positive charge.  This reduces the overall total charge on the 
plates, and therefore reduces the voltage across the capacitor.  Of 
course the circuit can’t remove the “polarization” charges in the 
‘blankets’ – as that would require the chemical breakdown of the 
substance.  So we have stored the same ‘circuit charge’ on the capacitor 
for less voltage, and so the capacitance has gone up.  The ratio by 
which the capacitance increases is called the relative permittivity of the 
substance (it used to be called the dielectric constant), and is given the 
symbol r.  In the presence of such a material, the 0 of all the equations 
derived so far in this chapter needs to be multiplied by r. 

7.2 Magnetism – when things move 
So far, we have just considered electric charges at rest.  Our next job is 
surely to look at electric charges that have gone roaming, and then to 
study magnetism – two things still to do?  No.  Actually we only have one 
job, because magnetism is all about moving charges.   

We ought to give one warning, though.  Just because magnetism is 
about moving charges, we can’t derive its formulae simply from 
Coulomb’s Law and Classical mechanics.  We need Relativistic 
mechanics!  That is actually one route into relativity – it is the kind of 
mechanics needed if electricity and magnetism are to be described 
together.  Put another way, your nearest piece of evidence for special 
relativity is not in a particle accelerator or airborne atomic clock, but in 
your wrist-watch (if it has hands), credit card, vacuum cleaner, fridge, CD 
player, printer, hard disk drive, or wherever your nearest magnet is. 

+ - - 
- 
- 
- 

+ 
+ 
+ 
+ 
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We shall demonstrate this at the end of the chapter.  However, for the 
moment, let us stick to what we need for the Olympiad, and let us carry 
on calling it “magnetism” as opposed to “relativistic electricity”. 

7.2.1 Magnetic Flux Density 
If there is a magnetic field, there must be a measurement of the field 
strength, and we call this the flux density, and give it the symbol B.  The 
field has a direction (from North to South), and is therefore a vector.  The 
fundamental fact of magnetism can be stated in two ways: 

1. If a wire of length L is carrying current I, and the wire is in a 
magnetic field B, it will experience a force F, where F = L I × B.  Written 
without the vector cross product, this is F = B I L sin , where  is the 
angle between the direction of the current, and the direction of the 
magnetic field. 

2. If a charged particle, of charge Q is moving in a magnetic field B, 
and it has velocity u, it will experience a force F, where F = Q u × B.  
Written without the vector cross product, this is F = Q u B sin  where  
is the angle between the direction of motion, and the direction of the 
magnetic field. 

You can show that these descriptions are equivalent, by imagining the 
wire containing N charges (each Q coulombs) per metre.  If the wire has 
length L, the total charge is QTOT=NQL, and this moves when the current 
is flowing.  If the current is I, this means that the charge passing a point 
in one second is I, and hence I=NQu, where u is the speed.  Therefore 

  F = L I × B 

  = L (NQu) × B 

  = (NQL) u × B 

  = QTOT u × B.  (14) 

7.2.2 Doing the Corkscrew 
Now that we have an expression for the force on a charge moving in a 
magnetic field, we can work out the motion if a charge is thrown into the 
vicinity of a magnet. 

The most important fact is that the force is always at right angles to the 
velocity.  Therefore it never does any work at all, and it never changes 
the kinetic energy (hence speed) of the object. 

The next important fact is that if the velocity is parallel to the magnetic 
field, there is no force – and the particle will just carry on going: as if the 
magnet weren’t there at all. 
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This second fact is useful, because any velocity can be broken down (or 
resolved) into two components – one parallel to the magnetic field (u 
cos), and one perpendicular to it (u sin).  The component parallel to 
the field will be unchanged by the motion – it will stay the same, just as 
Newton’s First Law requires. 

We next need to calculate what the effect of the other component will be.  
This will cause a force perpendicular to both the velocity and magnetic 
field, and we already know from classical mechanics that when a force 
consistently remains at right angles to the motion, a circular path is 
obtained.  We can calculate the radius from the equations of circular 
motion: 

  Magnetic Force = Mass × Centripetal Acceleration 
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Another useful measurement is the time taken for the particle to ‘go 
round the loop’ once.  Since its rotational speed is u sin, the time taken 
to go round a 2R circumference is  sin2 uRT  .  We can also work 
out the angular velocity: 
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u
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 sin
 (16) 

The overall motion is therefore a helix, or corkscrew shape, with the axis 
of the corkscrew parallel to the magnetic field.  The radius of the helix is 
given by R in equation (15), and the ‘pitch’ (that is, the distance between 
successive revolutions), is equal to D = T u cos. 

 

Helix, or corkscrew motion of an electron in a 
magnetic field. 

 

Please notice that all these formulae remain valid when the particle 
starts going very quickly. The only correction that special relativity 
requires is that we use the enhanced mass restmm  .  No further 
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correction is needed, because the speed remains constant, and 
therefore  does not change. 

7.2.3 Calculation of magnetic field strengths 
So far, we have just thought about the effects of a magnetic field.  
However before you can study what an electron will do in such a field, 
you have to make the field!  How do you do that? 

At its simplest, magnetic fields are caused by electric currents.  The 
bigger the current: the bigger the field.  These may be ‘real’ currents of 
electrons in wires, or they can be the effective currents of electrons 
‘orbiting’ their nuclei in atoms.  The latter is responsible for the 
permanent magnetic property of iron (and some other metals) – however 
the process is quite involved and needs no further consideration for the 
Olympiad. 

We do need to worry about the magnetism caused by wires, however, 
although only a brief description is necessary.  The Olympiad syllabus 
precludes questions that involve large amounts of calculus (hence 
integration), and most field calculations require an integral.  Therefore if 
you need to know how big a magnetic field is, you will probably be given 
the equation you need. 

Nevertheless it will help to see how the calculations are done.  There is a 
method akin to Coulomb’s Law, and an alternative called Ampere’s Law.  
We shall introduce both. 

7.2.3.1 Magnetic Coulomb – The Biot Savart Law 

To use this method, the wire (carrying current I) is broken down into 
small lengths (dL), linked head-to-tail.  To work out the size of the 
magnetic field at point r, we sum the effects of all the current elements.  
Let us take one current element at point s.  Its contribution to the B field 
at r is: 
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where (r-s) is the vector that points from the bit of wire to the point at 
which we are calculating B.  To work out the total field B(r), we integrate 
the expression along the wire.  In most cases, this can be put more 
simply as  
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where d is the distance from wire element to point of measurement, and 
 is the angle between the current flow and the vector from wire to 
measurement point. 

It is possible to use this expression to calculate the magnetic field B on 
the axis of a coil of wire with N turns, radius R, carrying current I, if we 
measure the field at a distance D from the central point: 
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7.2.3.2 The Ampere Law 

The alternative method of calculating fields is called the Ampere Law.  
You remember that Gauss’ electrostatic law involved integrating a dot 
product over a surface?  Well, the Ampere Law involves integrating a dot 
product along a line: 

  I
L

0 dLB  (20) 

In other words, if we choose a loop path, and integrate the magnetic flux 
density around it, we will find out the current enclosed by that loop. 

Let us give an example.  This formula is very useful for calculating the 
magnetic field in the vicinity of a long straight wire carrying current I.  
Suppose we take path L to be a circle of radius R, with the wire at its 
centre, and with the wire perpendicular to the plane of the circle, as 
shown in the diagram. 

 

Current I 

R 

Integration path round 
the wire, keeping 
constant distance from it. 

 

We know that B points round the wire, and therefore that B is parallel 
with dL (dL being the vector length of a small part of the path).  
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Furthermore, B=|B| must be the same all round the path by symmetry.  
Therefore: 
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 (21) 

Another splendid use of the Ampere Law is in calculating the magnetic 
field within the middle of a long solenoid with n turns per metre.  This 
time we use a rectangular path, as shown in the diagram. 

B-field direction 

Integration path 

 

Only one of the sides of the rectangle “counts” in the integration – the 
one completely inside.  Of the other three, one is so far away from the 
coil that there is no magnetic field, and the other two are perpendicular 
to the B-field lines, so the dot product is zero.  The rectangle encloses 
nL turns, and hence a current of nLI.  Therefore, Ampere’s Law tells us: 
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 (22) 

Before leaving Ampere’s Law, we ought to give a word of caution.  The 
Ampere Law is actually a simplified form of an equation called the 
Ampere-Maxwell Law22; and the simplification is only valid if there are no 

                                            

22 For the curious, the full Ampere-Maxwell Law states  

S
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I dSEdLB  0
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0  

where the surface S is any surface that has as its edge the loop L.  This reduces to equation 
(20) when E is constant. 
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changing electric fields in the vicinity.  Therefore you would be on dodgy 
ground using Ampere’s Law near a capacitor that is charging up! 

7.2.4 Flux, Inductance & Inductors 
To sum up the last section: if there is a current, there will be a magnetic 
field.  Furthermore, the strength of the magnetic field is proportional to 
the size of the current.  It turns out, however, to be more useful to speak 
of the magnetic flux .  This is the product of the field strength B and the 
cross sectional area of the region enclosed by the magnetic field lines.  
We visualize this as the total ‘number of field lines’ made by the magnet. 

We then write 

  LI . (23) 

The total amount of magnetic field (the flux) is proportional to the current, 
and we call the constant of proportionality L – the self-inductance (or 
inductance for short).  Any coil (or wire for that matter) will have an 
inductance, and this gives you an idea of how much magnetic field it will 
make when a current passes.  You might think of an analogy with 
capacitors – the capacitance gives a measure of how much electric field 
a certain charge will cause (since C-1 = V/Q and V is proportional to E). 

Now, this magnetic field is important, because a changing current will 
cause a changing magnetic field, and this will generate (or induce) a 
voltage, and therefore upset the circuit it is in.  This is something we 
need to understand better – but before we do so, let us remind ourselves 
of the laws of electromagnetic induction: 

7.2.5 Generators & Induction 
If a wire ‘thinks’ it is moving magnetically, a voltage is induced in it.  It 
doesn’t matter whether the wire is still, and the magnetic field is moving 
or changing; or whether the wire is moving and the magnetic field is still.  
However for the two situations, different equations are used.  The two 
equations are equivalent – however it is easier to remember them both 
than to prove the equivalence. 

7.2.5.1 Stationary field: Moving wire 
 

Magnetic field B down into paper. 

electrons in wire pushed to right 

motion of wire 
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Here the voltage is easy to calculate.  The electrons in the wire must 
move with the wire, and if the wire is in a magnetic field, they will 
experience a force pushing them along the wire.  This causes them to 
bunch up at one end of the wire – which in turn sets up an electric field 
which discourages further electrons to join the party.  Assuming that the 
wire has length L, and is being moved at speed u through a uniform 
magnetic field B (perpendicular to u and L – if B is not so inclined, take 
only the component of B which is), once equilibrium is established 

 

  Electric force balances magnetic force 

  

LuBV

uB
L

V

quBqE







 (24) 

7.2.5.2 Stationary wire: Changing field 

Here the voltage induced across the ends of a circular loop of wire 
(complete circuit, apart from the small gap) is given by  

  
dt

d
dSB

dt

d
V

S


   (25) 

7.2.5.3 Equivalence? 

The two expressions are very similar, as we shall see when we look at 
the first from a different perspective.  Look at the diagram – we have 
completed a loop by using a very long wire.   

Region of magnetic  
field B, pointing 
down into paper 

End wire moved in 
direction of white 
arrow.  Distance 
moved equals ut,  
where u is speed.  

In time t, the area is reduced by 
Lut, so the magnetic flux  
enclosed by the wire is reduced 
by BLut.  The rate of change of 
flux = induced voltage = BLu.  

L 
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The total flux enclosed in the loop is equal to B × Area.  In one second, 
the Area changes (decreases) by Lu, and hence the flux changes by 
BLu, and so we see that the first equation is a special case of the 
second.  The second is better as it also allows us to calculate what will 
happen if the wire is stationary. 

7.2.5.4 Direction of Induced Voltage 

When equation (25) is written down, it is customary to put a minus sign 
in front of the derivative.  The significance of this negation was Lenz’s 
discovery.  When the voltage is induced in a complete circuit, it will try to 
(and succeed in) driving a current.  This current will produce a magnetic 
field.  Lenz postulated that this ‘produced’ magnetic field always 
opposed the change being made. 

Let us have an example.  Imagine a large coil of wire (say, in a motor), 
with a decent sized current flowing in it.  Now let us try and lower the 
current by reducing the voltage of the supply.  This causes a reduction in 
the magnetic field, which in turn induces a voltage in the wire, which 
pushes a current in a desperate attempt to keep the original current 
going.  On the other hand, if I were to try an increase the current in the 
motor (by increasing the supply voltage), the opposite would happen: the 
greater current causes the magnetic field to grow, which induces a 
voltage, which pushes a current to oppose this increase.   

This is the origin of the phrase “back emf” to refer to the voltage induced 
across an inductor. 

Now for a word about the minus sign.  Yes, the voltage does go in 
opposition to the change in current, so I suppose one ought to write 
equation (25) with a minus sign.  However if you do, please also write 
Ohm’s law as V = IR, since the voltage opposes the current in a 
resistor.  I would prefer it, however, if you used common sense in 
applying your notation and were not stuck in ruts of “always” or “never” 
using the minus sign.  We all remember which way V and I go in a 
resistor without being nagged about conventions, so I hope that there is 
no need for me to nag you when inductors come on the scene. 

7.2.6 Inductors in circuits 
Just as a capacitor requires an energy flow to change the voltage across 
it, an inductor requires an energy flow to change the current through it.  It 
doesn’t give in without a fight. 

Let me illustrate this with a demonstration – or at least the story of one.  
A nasty physics teacher (yes, they do exist...) asked a pupil to come and 
hold one wire in his left hand, and one in his right – completing the circuit 
with his body.  He grasped the first wire, and then the second – steeling 
himself for the shock which never came.  The teacher then stalled him 
with questions, and kept him there, while he surreptitiously, slowly 
increased the current in the circuit, which also included an inductor.  
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Finally, the teacher said, “OK, now you can go back to your seat.”  The 
unsuspecting pupil let go of the wires suddenly, and was very surprised 
when the inductor – indignant to have its current shut off so quickly – 
made its displeasure known with an arc from the wire to the pupil.  It is 
foolish in the extreme to starve an inductor of its current.  Its revenge will 
be short, but not sweet. 

To see this, let us combine equations (23) and (25) 

  
dt

dI
LLI

dt

d

dt

d
V 


  (26) 

Equation (26) is the definitive equation for inductors, just like Q=CV was 
for capacitors, and V=IR is for a resistor. 

Again, we need to bear in mind the comments above, that the voltage is 
in the direction needed to oppose the change in current. You will often 
see (26) with a minus sign in it for that reason. 

Let us now calculate how much energy is stored in the device (actually in 
its magnetic field) 

   2
2
1 LIdIILdtI

dt

dI
LdtVIdtPU    (27) 

Since it seems sensible for the device to hold no energy when there is 
no current and no field, we take the constant of integration to be zero. 

7.2.7 Relativity and Magnetism 
At the beginning of the chapter we stated boldly that magnetism could be 
derived entirely from electrostatics and special relativity.  Now is the time 
to justify this.  We shall do so by deriving the same result two ways – 
once using magnetism, and once using relativity. 

The phenomenon we choose is the mutual attraction of two parallel 
wires carrying equal current in the same direction, and we shall calculate 
the attractive force per metre of wire. 
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R 

Both wires carry 
current I 

Direction of B-
field due to left 

hand wire 

Force on right 
hand wire 

 

7.2.7.1 A Classical Magnetic calculation 

Equation (21) tells us that the magnetic field at a distance R from a 
straight infinite wire is  

  
R

I
B



2

0  

Therefore, the attractive force experienced by one metre of parallel 
conductor also carrying current I is 

  
R

I
IB

L

F



2

2
0  (28) 

7.2.7.2 A Relativistic calculation 

Each wire contains positive ion cores (say Cu+ for a copper wire), and 
free electrons.  Let us imagine the situation in the diagram below, with 
conventional current flowing downwards in both wires.  The ion cores are 
stationary, while the electrons move upwards.  If the free (electron) 
charge per metre of cable is called 0, then the current is related to the 
electron speed u by the equation I=0u. 
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Distance 
between 
ion cores 

Distance 
between 
electrons 
appears 
contracted 

From perspective of 
ions in second wire,  
first wire appears 

negati vely charged.   
Wires attract. 

 

Let’s imagine the situation as perceived by an ion core in the second 
(right hand) wire.  It sees the ion cores in the other wire stationary, with 
charge density 0 and finds them repulsive.  However it also sees the 
electrons on the other wire, and is attracted by them.  The electrons are 
travelling, and therefore our observant ion core sees the length between 
adjacent electrons contracted.  Therefore as far as it is concerned, the 
electron charge density is higher than the ion core charge density by 

factor   21221


 cu .  Therefore its overall impression is attraction – 
with a total effective electric field (as derived in equation 6) 

 Total field = Field due to ion cores + Field due to loose electrons 

   
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 (29) 

where the final stage has made use of a Binomial expansion of (-1) to 
first order in u/c.  Now the total charge of ion cores experiencing this field 
per metre is of course 0.  Therefore the total attraction of the ion cores 
in the second wire to the first wire (electrons & ion cores) is 
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QEFions

0
2

2

0

2
0

2

2

4

22


















 (30) 
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This is the force experienced by the ion cores in the right hand wire.  By 
an exactly equivalent argument, the electrons in the right hand wire see 
their counterparts in the left wire as stationary, and see the left hand ion 
cores bunched up, and therefore more attractive. Therefore the electrons 
in the right hand wire experience an equal attraction, and the total 
attractive force between the wires is twice the figure in equation (30). 

Finally, if you get a book of physical constants and a calculator, you will 
discover that 2

00
 c .  Therefore the total force agrees exactly with 

our magnetic calculation in equation (28). 

7.3 Circuits – putting it together 
In this section, we look at combining resistors, capacitors and inductors 
in electrical circuits.  There are two reasons for doing this.  Firstly, once 
you have left school, you will be faced with complicated electronic 
networks, and you need to be able to analyse these just as well as the 
simple series and parallel arrangements you dealt with in the classroom.  
Secondly, engineers frequently use electric circuits as models or 
analogies for other systems (say, an oscillating bridge or the control of 
the nervous system over the muscles in a leg) – the better you 
understand electric circuits, the better you will understand any linked 
system. 

7.3.1 Circuit Analysis 
Our aim here is to be able to solve a circuit like the one below.  The 
circles represent constant-voltage sources (a bit like cells or batteries) 
and the linked circles represent constant-current sources.  Our aim is to 
find voltage difference across each component, and also to work out the 
current in each resistor. 

In order to solve the circuit, we use two rules – the Kirchoff Laws.  
Kirchoff’s 1st says that the total current going into a junction is equal to 
the total current leaving it.  Therefore, at B in the circuit below, we would 
say that IBE = IAB + ICB, where IBE means the current flowing from B to E 
(through R4). 

Kirchoff’s 2nd Law is that voltages always add up correctly.  In other 
words, no matter which route we took from E to B, say, we would agree 
on the voltage difference between E and B.  In symbols, if VBE means 

V1 

R1 R3 

V2 

R2 

I1 R4 

A B C D 

E 
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the difference in potential (as measured by a voltmeter) between B and 
E, then we have VBE = VAE + VBA.  This is basically the same thing as the 
law of conservation of energy.  The voltage (or, more strictly, the 
potential) at B, VB, is the energy content of one coulomb of charge at B.  
In travelling to E, it will lose VB-VE joules, irrespective of the route 
taken.23  In fact, we assume the truth of Kirchoff’s 2nd Law whenever we 
say, “let’s call the voltage at A ‘VA’,” for we are assuming that the voltage 
of A does not depend on the route used to measure it. 

Using these two rules, and the equation for the current through a resistor 
(for example, VBA = IBA R1), we may write down a set of equations for the 
circuit.  Notice that because currents are said to go from + to , this 
means that if VAB (the voltage of A, measured relative to B) is positive, 
then VA is bigger than VB, and hence IAB will be positive too.    To make 
the notation easier we will take the potential at E to be zero.  In symbolic 
form, this means that we shall call VBE  (that is, VBVE) VB for short. 

Kirchoff’s First Law: 

 IEA = IAB;     IBE = IAB+ICB;     I1 = ICB+ICD;     ICD = IDE 

Kirchoff’s Second Law: 

 VB = IBE R4 
= VA +VBA = V1  IAB R1  
= VD + VCD + VBC = V2 + ICD R3  ICB R2 

 
After elimination, the equations reduce to two: 

 V1 – IAB R1 = V2 + I1 R3 – (R3 + R2) ICB = (IAB + ICB) R4, 

and from these the currents IAB and ICB can be found (after a bit of messy 
algebra).  After this, the remaining currents and voltages are 
straightforward to determine. 

These principles can be used to solve any circuit.  However, as networks 
get bigger, it is useful to find more prescriptive methods of solution, 
which could be used by a computer.  We shall cover two methods here – 
for certain problems, they may be more efficient than the direct 
application of Kirchoff’s Laws. 

                                            

23 To see why the Law of Conservation of Energy is involved, let us suppose that our coulomb 
of charge would lose 5J going from B to E via A, whereas it would lose 3J in going directly.  
All it would have to do is go direct from B to E, then back to B via A and it would be back 
where it started, having gained 2J of energy!  This is not allowed. 
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7.3.1.1 Method of Superposition 

The method of superposition relies on the fact that for a simple resistor, 
the current is proportional to the voltage.  It follows that if current I1 
causes a voltage difference of 3V, and current I2 causes a voltage 
difference of 5V, then current I1+I2 will cause an 8V p.d. across the 
component.  Here is the procedure: 

 Choose one of the supply components. 
 Remove the other supply components from the circuit.  Replace voltage 

sources with direct connections (short circuits), and leave breaks in the 
circuit where the current sources were (open circuits). 

 Calculate the current in each wire, and the voltage across each 
component. 

 Repeat the procedure for each supply component in turn. 
 The current in each wire for the original (whole) circuit is equal to the 

sum of the currents in that wire due to each supply unit. 
 The voltage across each component in the original (whole) circuit is 

equal to the sum of the voltages across that component due to each 
supply unit. 

Let’s use this method to analyse the circuit above.  We start by 
considering only source V1.  Removing the other supply components 
gives us a circuit like this. 

This circuit is easier to analyse as it only has one supply.  Supply V1 
feeds a circuit with resistance 

  R1 + {R4 // (R2+R3)} 

  
 

324

324
1 RRR

RRR
R




  

where // means ‘in parallel with.’  Accordingly, the current supplied by V1 
(and the current through R1 which is in series with it) is equal to V1 
divided by this resistance.  The voltages of points B, C and D can be 
calculated, as can the current in each wire.  We make a note of the 
values, and add to them the results of analyses of circuits only 
containing I1 and only containing V2. 
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R1 R3 R2 

R4 

A B C D 

E 



  Revision April 2017 

 Page 124 

You may find this method good in the sense that you only have to deal 
with one supply component at a time – and therefore all you need to 
know is how to combine resistors (something you’ve done before).  
Having said that, we end up analysing three circuits rather than one, so it 
is more time consuming. 

Before leaving the method, you may be curious why voltage sources 
were replaced with short circuits, and current sources with open circuits.  
Here’s the reason.  A voltage source does not change the voltage across 
its terminals, no matter what the current is (d Voltage / d Current = 
Requivalent = 0).  The only type of resistor which behaves likewise is a 
perfect conductor (0).  Similarly, a current source does not change its 
current, no matter what the voltage (d Current / d Voltage = 1 / Requivalent 
= 0).  The equivalent resistor in this case is a perfect insulator (∞) 
which lets no current through ever. 

7.3.1.2 Method of Loop Currents 

Here we break the circuit down into the smallest loops it contains.  Here 
there are three loops:  

 E to A to B and back to E  (loop 1),  
 E to B to C to E (loop 2), and  
 E to C to D to E (loop 3).   

We call the current in loop 1 “loop current” number one (IL1), with IL2 and 
IL3 representing the currents in the other two loops.  We then express all 
other currents in terms of the loop currents.  Clearly, IAB = IL1, since R1 is 
in the first loop alone.  Similarly, IBC = IL2, and ICD = IL3.   

The current through R4 is more complex, since this resistor is part of two 
of the loops.  We write IBE = IL1  IL2.  Here IL1 is positive, since IBE is in 
the same direction as IL1, whereas IL2 (which goes from E to B then on to 
C) is in the opposite direction.  These designations automatically take 
care of Kirchoff’s First Law.  Notice that by this method, I1 = IL3  IL2. 

Each loop now contributes one equation  Kirchoff’s 2nd law around that 
loop.  Clearly, if you go all the way round the loop, you must return to the 
voltage you started with.  Taking the first loop as an example, we have: 

0  = VAE + VBA + VEB 

V1 

R1 R3 

V2 

R2 

I1 R4 

A B C D 

E 

IL1 IL3 IL2 
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  = V1  IAB R1  IBE R4 
 = V1  IL1 R1 + (IL1  IL2) R4. 

In a similar way, we write equations for each of the other two loops24.  
We then have three equations in three unknowns (the three loop 
currents), which can be solved.  The end result is the same as for a 
direct ‘sledgehammer’ approach with Kirchoff’s Laws – but the method is 
more organized. 

7.3.2 Alternating Current 
Having looked at circuits with resistors in them, we next turn our 
attention to circuits with inductors and capacitors as well.  For a direct 
current, the situation is easy.  After a brief period of settling down, there 
is no voltage drop across an inductor (because the current isn’t 
changing), and a capacitor doesn’t conduct at all. 

For alternating currents the situation is more complicated.  Let us 
suppose that the supply voltage is given by V=V0 cos t.  It turns out that 
the circuit will settle down to a steady behaviour (called the steady 
state).  Once this has happened, the voltage across each component 
(and the current through each component) will also be a cosine wave 
with frequency , however it may not be in phase with the original V. 

7.3.2.1 Resistor, capacitor and inductor 

We start with the three simplest circuits – the lone resistor, the lone 
capacitor and the lone inductor, each supplied with a voltage V=V0 cos 
t. 

For the resistor, I=V/R, so the result is straightforward. 

For the capacitor, Q=VC, and if we take I as positive in the direction 
which charges the capacitor, then 
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 (31) 

For the inductor, dtdILV  , so 

                                            

24 It may help when writing the equations to notice the pattern: voltage sources count 
positively if you go through them from  to +, but negatively if you go from + to .  The 
voltages across resistors (e.g. VBA = I R1) count negatively if you go through them in the same 
direction as the current, and positively if you go through them the opposite way to the current. 
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where we have taken the constant of integration to be zero.  Failure to 
do so would lead to a non-zero mean current, which is clearly impossible 
as the mean supply voltage is zero. 

7.3.2.2 Reactance and Impedance 

For resistors, the current and voltage are proportional, and consequently 
are in phase – one peaks at the same time as the other.  For the other 
two components, this is not the case.  The voltage is /2 radians (or 90°) 
out of phase with respect to the current.  Inductor currents peak 90° later 
than the voltage (the current lags the voltage), whereas capacitor 
currents peak 90° before the voltage (the current leads the voltage).  
Nevertheless, the amplitude of the voltage is still proportional to the 
amplitude of the current, and we call the ratio of the amplitudes the 
reactance (X). 
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


 (33) 

By convention, we take reactance to be positive if the current lags the 
voltage by 90°, and negative if it leads by 90°. For capacitors and 
inductors in series, the total reactance is equal to the sum of the 
individual components’ reactances – just as resistances add in series.  
Similarly, the formula for combining reactances in parallel is the same for 
that used for the resistance of resistors wired in parallel. 

When a circuit is constructed with resistors, capacitors and inductors, 
then we need a way of analysing a circuit with both resistances and 
reactances.  We visualise the situation using a 2D (phasor) diagram. 

For any component or circuit, both voltage and current are represented 
by vectors.  The length of the lines gives the amplitude, and the angle 
between the vectors gives the phase difference.  By convention, we 
imagine the vectors to rotate about the origin in an anticlockwise 
direction (once per time period of the alternating current).  The vectors 
for a resistor, capacitor and inductor are shown below. 
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As the arrows rotate anticlockwise, for the inductor, V comes before I.  
With the capacitor, I comes before V.  This accurately represents the 
phase relationships between voltage and current for these components.   

For a set of components in series, the current I will be the same for all of 
them.  We usually draw the current pointing to the right.  Voltages across 
inductors will then point up, those across resistors point right, and those 
across capacitors point down.  By adding these voltages vectorially, we 
arrive at the voltage across the set of components – and can calculate 
its amplitude and phase relationship with respect to the current. 

Similarly, for components in parallel, the voltage will be the same for 
each.  We thus put voltage pointing to the right.  Currents in capacitors 
now point up, currents in resistors point right, and currents in inductors 
point down.  The total current is given by the vector sum of the individual 
currents. 

In all cases, we call the ratio of the voltage amplitude to the current 
amplitude the impedance (Z) irrespective of the phase difference 
between the current and voltage.25  In general the impedance of a 
component is related to resistance and reactance by Z2 = R2 + X2. 

7.3.2.3 Complex Numbers and Impedance 

If you are familiar with complex numbers, there is an easier way of 
describing all of this, using the Argand diagram in place of 2-dimensional 
vectors.  The impedance Z is a now a complex number Z = R + iX, with 
R as its real part and X as its imaginary part. 

The complex impedances of a resistor, capacitor and inductor are 
accordingly written as R, i/C and iL respectively.  The impedance of 
a set of components in series is given by the sum of the individual 
impedances.  For a parallel network, Z1 of the network is given by the 

                                            

25 In other words, a resistance is a special kind of impedance with zero phase difference, and 
a reactance is a special kind of impedance when the phase difference is 90°. 
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sum of Z1 for each component, where ‘inverse’ (or ‘reciprocal’) is 
calculated in the usual way for complex numbers. 

7.3.2.4 Root Mean Square values 

You will also need to remember the definition of RMS voltage and 
current in an a.c. circuit.  For a resistor, remember that the RMS supply 
voltage is the d.c. voltage which would supply the same mean power to 
the device. 
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7.3.3 Resonance 
One further circuit needs a mention, and that is the simple circuit of an 
inductor and a capacitor connected together, as shown in the diagram 
below.  Both the voltage and current for the two components must be the 
same, and so with the sign conventions chosen in the diagram: 
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This is an equation of ‘simple harmonic motion’ with angular frequency 
, where LC12  .  This circuit can therefore oscillate at this 
frequency, and this makes it useful in radio receivers for selecting the 
frequency (and hence radio station) which the listener wants to detect. 

7.4 Questions 
1. Calculate the size of the repulsion force between two electrons 0.1nm 

apart. 
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2. In this question, you will make an estimate for the size of a hydrogen atom.  
Suppose an electron moves in a circular path around the proton, with 
radius r.  Calculate, in terms of r, the potential energy of the atom (it will be 
negative, of course), the speed of the electron, and its kinetic energy.  
Now write down an expression for the total energy of the electron.  Find 
the value of r which minimizes this total energy, and compare it to the 
measured radius of a hydrogen atom, which is about 5×10–11 m. 

3. What fraction of the electrons in the solar system would have to be 
removed in order for the gravitational attractions to be completely 
cancelled out by the electrostatic repulsion? 

4. A cloud of electrons is accelerated through a 20kV potential difference (so 
that their kinetic energy of each coulomb of electrons is 20kJ).  Calculate 
their speed. 

5. A beam of 20kV electrons is travelling horizontally.  An experimenter 
wishes to bend their path to make them travel vertically (at the same 
speed) using a region with a uniform electric field.  This region is square 
with side length 5cm.  Calculate the size and direction of electric field 
needed to do this.  What would happen to a beam of 21kV electrons 
passing this region? 

6. A different experimenter wishes to bend the beam of 20kV electrons using 
a magnetic field.  She chooses to bend the beam round a circular path of 
radius 3cm.  What magnitude and direction of magnetic field is needed?  
What would happen to a beam of 21kV electrons passing this region? 

7. I wish to make a 1T magnetic flux density inside a long coil (or solenoid) 
with radius 5mm.  I use wire which can carry a current of 4A.  How many 
turns per metre of coil are needed? 

8. ‘Clamp’ ammeters used by electricians can measure the current in a wire 
without needing to break the wire.  A metal loop encloses the wire, and the 
magnetic field around the wire is measured.  If the loop is circular, with 
radius 3cm, and is centred on the wire, calculate the magnetic flux density 
measured when the current in the wire is 100A. 

9. Calculate the impedance of a 20 resistor wired in series with a 3mH 
inductor when fed with alternating current of 50Hz.  A capacitor wired in 
parallel with this combination causes the overall reactance of the circuit to 
become zero at 50Hz (in other words, the voltage is in phase with the total 
current).  Calculate the capacitance of the capacitor. 
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8 Small Physics 
The rules, or laws, of classical mechanics break down typically in three 
cases.  We have seen that when things start going quickly, we need to 
take special relativity into account.  Another form of relativity – the 
general theory – is needed when things get very heavy, and the 
gravitational fields are strong.  The third exception is very mysterious – 
and occurs often when we deal with very small objects like atoms and 
electrons.  This is the realm of quantum physics, and many of its 
discoverers expressed horror or puzzlement at its conclusions and 
philosophy. 

Having said that, there is no need to be frightened.  While there is much 
we do not understand, a set of principles have been set up which allow 
us to perform accurate calculations.  Furthermore, those calculations 
agree with experiment to a high degree of accuracy.  The development 
of the transistor, hospital scanner, and many other useful devices testify 
to this.  The situation is analogous to a lion-tamer who can get the lion to 
jump through a hoop, though she doesn’t know what is going on inside 
the lion. 

8.1 Waves and Particles 
Quantum objects, like electrons and photons (packets of light) are 
difficult to describe.  As physicists, we have two models, or descriptions, 
which we are comfortable using – the wave and the particle. 

Waves can interfere, they have a wavelength, frequency and intensity, 
and they carry energy by means of fluctuations in a medium.  The 
intensity is continuous – it can take any value. 

Particles on the other hand, are lumps.  They possess individual 
masses, energies and momenta.  They most certainly do not interfere – 
if you add 1 apple to 1 apple, you always get 2 apples.  Finally they only 
come in integer numbers.  You can have one, or two, or 45 678 543; but 
you can‘t have half. 

The electron fits neither description.  Light fits neither description.  The 
descriptions are too simplistic.  However there are instances when the 
particle description fits well – but it doesn’t always fit.  There are also 
instances when the wave description fits well – but it doesn’t always fit. 

Given that a particular electron beam may behave like particles one 
minute, and waves the next, we need some kind of ‘phrase book’ to 
convert equivalent measurements from one description to the other.  
Quantum theory maintains that such a ‘phrase book’ exists. 
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The total number of particles (in the particle picture) is related to the 
intensity (in the wave picture).  The exact conversion rate can be 
determined using the principle of conservation of energy. 

The energy per particle (in the particle picture) is related to the frequency 
(in the wave picture) by the relationship  

 Energy of one particle (in J) = h × Frequency of wave (Hz), (1) 

where h is the Planck constant, and has a value of 6.63×10-34 Js.  You 
may also come across the constant ‘h-bar’ 2h , which can be used 
in place of h if you wish to express your frequency as an angular 
frequency in radians per second. 

The momentum per particle (in the particle picture) is related to the 
wavelength of the wave (in the wave picture) by the relationship 

 
(m) Wavelength

  m/s) (kg particle one of Momentum
h

  . (2) 

8.2 Uncertainty 
The bridge between wave and particle causes interesting conclusions.  
We have seen in the chapter on Waves that a wave can have a well-
defined frequency or duration (in time), but not both.  This was 
expressed in the bandwidth theorem: 

  1 tf . 

When combined with our wave-particle translation, we obtain a 
relationship between energy and time: 

  htE  . (3) 

In other words, only something that lasts a long time can have a very 
well known energy. 

Let us have an example.  Suppose a nucleus is unstable (radioactive), 
with a half-life T.  Seeing as the emission of the radiation is a process 
that typically ‘takes’ a time T, the energy of the alpha particle (or 
whatever) has an inherent uncertainty of ThE  .  If we were watching 
a spectrometer, monitoring the radiation emitted, we would expect to see 
a spread of energies showing this level of uncertainty.  

The bandwidth theorem also has something to say about wavelength: 

  1
1







 x


. 



  Revision April 2017 

 Page 132 

This has the quantum consequence: 

  hxp   . (4) 

This is frequently stated as, “You can’t know both the momentum and 
the position of a particle accurately.”  It might be better stated as, “Since 
it is a bit like a wave, it can not have both a well defined position and 
momentum.” 

We can use this to make an estimate for the speed of an electron in an 
atom.  Atoms have a size of about 10-10 m.  Therefore, for an electron in 
an atom, m10 10x .  So, using equation (4), m/skg10 23p .  Given 
the electron mass of about 10-30 kg, this gives us a speed of about 
107 m/s – about a tenth the speed of light! 

Caution: Please note that we haven’t defined precisely what we mean 
by uncertainty ().  That is why we have only been able to work with 
approximate quantities.  In more advanced work, the definition can be 
tightened up (to mean, say, standard deviation).  However it is better for 
us to leave things as they are.  In any case, it is never wise to state 
uncertainties to more than one significant figure! 

8.3 Atoms 
Putting things classically for a moment, the electron orbits the nucleus.  
While a quantum mechanic thinks this description very crude, we shall 
use it as a starting point. 

Now, let’s imagine the electron as a wave.  For the sake of visualization, 
think of it as a transverse wave on a string that goes round the nucleus, 
at a distance R from it.  If the electron wave is to make sense, the string 
must join up to form a complete circle.  Therefore the circumference 
must contain a whole number of wavelengths. 
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The conclusion of this argument is that the angular momentum of the 
electron, as it goes round the nucleus, must be in the ħ-times table. 

The argument is simplistic, in that the quantum picture does not involve 
a literal orbit.  However, the quantum theory agrees with the reasoning 
above in its prediction of the angular momentum. 
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Given that the angular momentum can only take certain values (we say 
that it is quantized – it comes in lumps), we conclude that the electron 
can only take certain energies.  These are called the energy levels, and 
we can work out the energies as follows:26 
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where Z is the number of protons in the nucleus.  We are, of course, 
ignoring the other electrons in the atom – hence this model is only 
directly applicable to hydrogen.27  Next, we use the relationships derived 
in section 1.2.2, where we showed that for a Coulomb attraction,  

  Potential energy = -2 × Kinetic Energy 

  Potential energy = 2E (7) 
  Kinetic energy = -E  

where E is the total energy of the electron.  We may use this information 
to eliminate the radius in equations (6), obtaining: 
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When dealing with atoms, the S.I. units can be frustrating.  A more 
convenient unit for atomic energies is the electron-volt.  This is the 
energy required to move an electron through a potential difference of 
one volt, and as such it is equal to about 1.60×10-19 J.  In these units, 
equation (8) can be re-written: 

  eV6.13
2

2


n

Z
E . (9) 

This form should be remembered.  It will help you to gain a ‘feel’ for the 
energies an electron can have in an atom, and as a result, it will help you 
spot errors more quickly. 

                                            

26 The kinetic energy is calculated using the relationships derived in chapter 3.  If you do not 
wish to go in there, a simpler derivation can be employed.  L=mvR, where v is the speed.  
Therefore the kinetic energy mv2/2 = L2/(2mR2). 

27 Hydrogen, that is, and hydrogen-like ions: which are atoms that have had all the electrons 
removed apart from one. 
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When an electron moves from one level (n value) to another, energy is 
either required or given out.  This is usually in the form of a photon of 
light that is absorbed or emitted.  The energy of the photon is, as usual, 
given by the Planck constant, multiplied by the frequency (in Hz) of the 
light. 

If an electron moves from orbit n1 to n2, where n2<n1, the frequency of 
photon emitted is therefore given by: 

   Hz1029.3
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nn
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Similarly, the formula gives the frequency of photon required to promote 
an electron from n2 to n1.  The frequency of photon required to remove 
the electron completely from the atom (if it starts in level n2) is also given 
by equation (10), if n1 is taken as infinite. 

8.4 Little Nuts 
As far as Romans were concerned, the stones in the middle of olives 
were ‘little nuts’ or nuclei.  We shall thus turn our attention to ‘nutty 
physics’. 

The nuclear topics required for the International Olympiad are common 
to the A-level course.  In this book we shall merely state what knowledge 
is needed.  You will be able to find out more from your school textbook. 

8.4.1 Types of radiation 
Alpha decay: in which a helium nucleus (two protons and two neutrons) 
is ejected from the unstable nucleus. 

Beta decay: in which some weird nucleonic processes go on.  In all beta 
decays, the total number of nucleons (sometimes called the mass 
number) remains constant.   

In - decay (the most common), a neutron turns into a proton and an 
electron.  The electron is ejected at speed from the nucleus.    

There are two other forms of beta radiation.  In + decay, a proton turns 
into a neutron and an anti-electron (or positron).  The positron flies out of 
the nucleus, and annihilates the nearest electron it sees.  The 
annihilation process produces two gamma rays. 

The other permutation is electron capture () in which an electron is 
captured from an inner (low n) orbit, and ‘reacts’ with a proton to make a 
neutron.  This phenomenon is detected when another electron descends 
to fill the gap left by the captive – and gives out an X-ray photon as it 
does so. 
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Gamma decay: in which the nucleus re-organizes itself more efficiently, 
leading to a drop in its internal potential energy.  This energy is released 
as a burst of electromagnetic radiation – a gamma ray photon.  By 
convention high energy photons are called X-rays if they come from the 
electrons in an atom, and gamma rays if they come from a nucleus. 

8.4.2 Radioactive decay 
It is beyond the wit of a scientist to predict when a particular nucleus will 
decay.  However we have so many radionuclides in a sample that the 
average behaviour can be modelled well. 

The rate of decay (number of decays per second) is proportional to the 
number of nuclei remaining undecayed.  This ‘rate of decay’ is called the 
activity, and is measured in Becquerels (Bq).  We define a parameter  
to be the constant of proportionality:   
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where N0 is the initial number of radionuclides, and I0 is the initial 
activity. 

The half-life (T) is the time taken for the activity (or the number of 
undecayed nuclei) to halve.  This is inversely proportional to , as can be 
seen: 
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If a half-life is too long to measure directly, the value of  can be 
determined if I and N are known separately.  I would be measured 
simply by counting the decays in one year (say), while N would be 
measured by putting a fraction of the sample through a mass 
spectrometer. 

8.4.3 Nuclear Reactions 
Now for the final technique:  You will need to be able to calculate the 
energy released in a nuclear reaction.  For this, add up the mass you 
started with, and add up the mass at the end.  Some mass will have 
gone missing.  Remembering that mass and energy are basically the 
same thing – the ‘lost mass’ is the energy released from the nuclei.  
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Finally, to convert from kilograms to joules, multiply by c2 (the speed of 
light squared).  

A particular case of a nuclear reaction is the ‘annihilation’ reaction, in 
which a particle and its antiparticle (say an electron and a positron) react 
together.  The matter vanishes, and the energy appears in the form of 
two gamma rays.28 

8.5 Questions 
1. Calculate the wavelength and frequency of the quantum associated with a 

60g ball travelling at 40m/s.  Why don’t we observe interference effects 
with balls such as this? 

2. Blue light has a wavelength of approximately 400nm, while red light has a 
wavelength of approximately 650nm.  Calculate the energies of photons of 
blue and red light (a) in joules (b) in electron-volts (eV).  One electron-volt 
is equal to 1.602×10–19 J. 

3. Work out the wavelengths of light emitted when electrons from the n=5, 4, 
and 3 levels ‘descend’ to the n=2 level.  Why do you think that these 
transitions were more important in the historical development of atomic 
theory than the ‘more fundamental’ transitions going down to the n=1 
level? 

4. Calculate the energies of the n=1, 2, 3, 4 and 10 levels for an ionized 
helium atom (a helium nucleus with a single electron). 

5. Calculate the size of a muonic hydrogen atom in comparison with a normal 
hydrogen atom.  A muonic hydrogen atom has a muon rather than an 
electron moving near a proton.  The muon has a charge equal to that of an 
electron, but its mass is 207 times greater. 

6. In this question, you will make an estimate for the size of a hydrogen atom.  
Suppose that the atom’s radius is r.  Then the uncertainty in the electron’s 
position is 2r. Use the uncertainty principle to work out the uncertainty in 
its momentum, and from this work out its typical kinetic energy, in terms of 
r.  The electron’s typical electrostatic energy is –e2/40r2.  Find the value 
of r which minimizes the total energy of the electron. 

7. Calculate the energy liberated in the fusion reaction nHeHH 1
0

4
2

3
1

2
1  .  

The masses of the particles are given in the table in unified mass units (u).  
1u = 1.660431027 kg. 

                                            

28 When analysing the collision, you find that you can not satisfy momentum and energy 
conservation at the same time if only one photon is produced. 
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2H 2.014102 
3H 3.016049 
4He 4.002604 
n 1.008665 
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9 Practical Physics 

9.1 Errors, and how to make them29 
Every dog has its day, every silver lining has its cloud, and every 
measurement has its error. 

If you doubt this, take (sorry – borrow with permission) a school metre 
stick, and try and measure the length of a corridor in your school.  Try 
and measure it to the nearest centimetre.  Then measure it again.  
Unless you cheated by choosing a short corridor, you should find that 
the measurements are different.  What’s gone wrong? 

Nothing has gone wrong.  No measurement is exact, and if you take a 
series of readings, you will find that they cluster around the ‘true value’.  
This spread of readings is called random error – and will be determined 
by the instrument you use and the observation technique.  To be more 
precise and polite, this kind of ‘error’ is usually called uncertainty, as this 
word doesn’t imply any mistake or incompetence on the part of the 
scientist. 

So, whenever you write down a measurement, you should also write 
down its uncertainty.  This can be expressed in two ways – absolute and 
relative. 

The absolute uncertainty gives the size of the spread of readings.  You 
might conclude that your corridor was (12.3±0.2)m long.  In other words, 
your measurements are usually within 20cm of 12.3m.  In this case the 
absolute uncertainty is 20cm.  

The absolute uncertainty only gives part of the story.  A 10cm error in the 
length of a curtain track implies sloppy work.  A 10cm error in the total 
length of the M1 motorway is an impressive measurement.  To make this 
clearer, we often state errors (or uncertainties) in percentage form – and 
this is called relative uncertainty.  The relative uncertainty in the length of 
the corridor is 

                                            

29 A mathematician would probably be appalled at some of the statements I make.  The study 
of errors and uncertainties is embedded in statistics, which is a well-established discipline.  
There are many refinements to the results I quote which are needed to satisfy the rigour of a 
professional statistician.  However, the thing about uncertainties in measurements is that 
quoting them to more than one significant figure is missing the point, and therefore our 
methods only need to be accurate to this degree.  If you are doing statistics and you want to 
take things more seriously, then you will understand (2) from the addition of variances; and 
you will realise that in 8.2.1 we really ought to be adding variances not errors.  You will also 
appreciate that (2) ought to have an (n-1) in the denominator to take into account the 
difference between population and sample statistics, and that our section 8.2.2 is a form of 
the Binomial theorem to first order. 
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 %2%6.1 
m 12.3

m 0.2

tMeasuremen

yUncertaint Abs.
Error Relative . (1) 

Notice the rounding off at the end.  It is usually pointless to give 
uncertainties to more than one significant figure. 

Every measurement has its uncertainty, and the only way of determining 
this is to take more than one measurement, and work out the standard 
deviation – to measure the spread.  In practice the spread can be 
‘eyeballed’ rather than calculated.  If the measurements were 54.5cm, 
54.7cm and 54.3cm, then there is no need to use a calculator and the 
technical definition of deviation.  The observation that the spread is 
about ±0.2cm is perfectly good enough.  

Notice that the more readings you take, the better idea you get of the 
spread of the measurements – and hence the better estimate you can 
make for the middle, which is indicative of ‘true’ value.  Therefore we 
find, from statistics, that if you take n measurements, and the absolute 
uncertainty is x, then the uncertainty of the mean of those 
measurements is approximately:30 

  
n

x
mean ofy Uncertaint . (2) 

Therefore, the more measurements you take, the more accurate the 
work.  Notice that if you wish to halve the uncertainty, you need to take 
four times as many readings.  This is subject to one proviso: 

Measurements also have a resolution.  This is the smallest 
distinguishable difference that the measuring device (including the 
technique) can detect.  For a simple length measurement with a metre 
ruler, the resolution is probably 1mm.  However if, by years of practice 
with a magnifying lens, you could divide millimetres into tenths by eye, 
you would have a resolution of 0.1mm using the same metre stick.  That 
is why we say that the resolution depends on the technique as well as on 
the apparatus. 

The uncertainty of a measurement can never be less than the resolution.  
This is the proviso we mentioned below equation (2).  Why should this 
be the case?  Let us have a parable. 

Many years ago, the great nation of China had an emperor.  The masses 
of the population were not permitted to see him.  One day, a citizen had 

                                            

30 This result will be proved in any statistics textbook.  To give a brief justification – the more 
readings you take, the more likely you are to have some high readings cancelling out some 
low readings when you take the average. 
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the sudden desire to know the length of the emperor’s nose.  He could 
not do this directly, since he was not permitted to visit the emperor.  So, 
using the apparatus of the imperial administration, he asked all the 
regional mandarins to ask the entire population to make a guess.  Each 
person would make some guess at the imperial nasal length – and the 
error of each guess would probably be no more than ±2cm – since nose 
lengths tend not to vary by more than about 4cm. 

However, the mean would be a different matter.  Averaged over the 
1000 million measurements, the error in the mean would be 0.7m.  So 
the emperor’s nose had been measured incredibly accurately – without a 
single observation having been made! 

The moral of the story: uncertainties are reduced by repeated 
measurement, but the error can never be reduced below the resolution 
of the technique – here 2cm – since ignorance can not be circumvented 
by pooling it with more ignorance.  

9.2 Errors, and how to make them worse 
Errors are one thing.  The trouble is that usually we want to put our 
measurements into a formula to calculate something else.  For example, 
we might want to measure the strength of a magnetic field by measuring 
the force on a current-carrying wire ILFB  .   

If there is a 7% uncertainty in the current, 2% in the force and 1% in the 
length – what is the uncertainty in the magnetic field? 

There are two rules you need: 

9.2.1 Rule 1 – Adding or subtracting measurements 
If two measurements are added or subtracted, the absolute uncertainty 
in the result equals the sum (never the difference) of the absolute 
uncertainties of the individual measurements. 

Therefore if a car is (3.2±0.1)m long, and a caravan is (5.2±0.2)m long, 
the total length is (8.4±0.3)m long.  Similarly if the height of a two-storey 
house is (8.3±0.2)m and the height of the ground floor is (3.1±0.1)m, the 
height of the upper floor is (5.2±0.3)m.  

Even in the second case, we do not subtract the uncertainties, since 
there is nothing stopping one measurements being high, while the other 
is low.31 

                                            

31 Of course, there is a good chance that the errors will partly cancel out, and so our method 
of estimating the overall error is pessimistic.  Nevertheless, this kind of error analysis is good 
enough for most experiments – after all it is better to overestimate your errors.  If you want to 
do more careful analysis, then you work on the principle that if the absolute uncertainties in a 



  Revision April 2017 

 Page 141 

9.2.2 Rule 2 – Multiplying or dividing measurements 
If two measurements are multiplied or divided, the relative uncertainty in 
the result equals the sum (never the difference) of the relative 
uncertainties of the individual measurements. 

Therefore if the speed of a car is 30mph ± 10%, and the time for a 
journey is 6 hours ± 2%, the uncertainty in the distance travelled is 12%. 

Notice that one consequence of this is that if a measurement, with 
relative uncertainty p% is squared (multiplied by itself), the relative error 
in the square is 2p% - i.e. doubled.  Similarly if the error in measurement 
L is p%, the error in Ln is p×n%.  Notice that while a square root will 
halve the relative error, an inverse square (n=–2) doubles it.  All the 
minus sign does is to turn overestimates into underestimates.  It does 
not reduce the magnitude of the relative error.32 

Now we can answer our question about the magnetic field measurement 
at the beginning of the section.  All three relative errors (in length, force 
and current) must be added to give the relative error in the magnetic 
field, which is therefore 10%. 

9.3 Systematic Errors 
All the ‘errors’ mentioned so far are called ‘random’, since we assume 
that the measurements will be clustered around the true value.  However 
often an oversight in our technique will cause a measurement to be 
overestimated more often than underestimated or vice-versa.  This kind 
of error is called ‘systematic error’, and can’t be reduced by averaging 
readings.  The only way of spotting this kind of error (which is a true 
error in that there is something wrong with the measurement) is to repeat 
the measurement using a completely different technique, and compare 
the results.  Just thinking hard about the method can help you spot some 

                                                                                                                     

set of measurements are A, B, C…, then the absolute uncertainty in the sum (or in any of the 

differences) is given by 222 CBA  .  This result comes from statistics, where we find 
that the variance (the square of the standard deviation) of a sum is equal to the sum of the 
variances of the two measurements. 

32 The conclusions of this paragraph can be justified using calculus.  If measurement x has 

absolute uncertainty x, and y (a function of x) is given by nAxy  , then we find that the 

relative error in y is given by: 
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that is n multiplied by the relative error in x. 
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systematic errors, but it is still a good idea to perform the experiment a 
different way if time allows. 

9.4 Which Graph? 
You will often have to use graphs to check the functional form of 
relationships.  You may also have to make measurements using the 
graph.  In order to do either of these, you usually need to manipulate the 
data until you can plot a straight line.  A straight line is conclusive proof 
that you have got the form of the formula right!   

The gradient and y-intercept can then be read, and these enable other 
measurements to be made.  For example, your aim may be to measure 
the acceleration due to gravity.  You may plot velocity of falling against 
time, in which case you will need to find the gradient of the line. 

At its most general, you will have a suspected functional form y=f(x), and 
you will need to work out what is going on in the function f.  Notice that 
our experiment will give us pairs of (x,y) values – what is not known are 
the parameters in the function f.  We find them by manipulating the 
equation: 

  

ByxhAyxg

xfy





),(),(

)(

 . 

We can then plot g(x,y) against h(x,y), and obtain the parameters A and 
B from the gradient and intercept of the line.  Furthermore, the presence 
of the straight line on the graph assures us that our function f was a 
good guess.  We shall now look at the most common examples. 

9.4.1 Exponential growth or decay 

Here we have the functional form BxAey  , where A and B need to be 
determined.  We manipulate the equation: 

  
BxAy

Aey Bx



lnln

. 

So we plot (ln y) on the vertical axis, and (x) on the horizontal.  The y-
intercept gives ln A, and the gradient gives B. 

9.4.2 Logarithmic growth or decay 
Here we have the functional form xBAy ln , and again, we need to 
work out the values of A and B.  This equation is already in linear form – 
we plot y on the vertical, and (ln x) on the horizontal.  The y-intercept 
gives A, and the gradient gives B. 
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9.4.3 Power laws 

This covers all equations with unknown powers: BAxy  .  The 
manipulation involves logarithms: 

  

xBAy

xAy

Axy
B

B

lnlnln

lnlnln






. 

Here we plot (ln y) against (ln x), and find the power (B) as the gradient 
of the line.  The A value can be inferred from the y-intercept, which is 
equal to ln A. 

9.4.4 Other forms 
Even hideous looking equations can be reduced to straight lines if you 
crack the whip hard enough.  How about 3BxxAy  ?  Is it tasty 
enough for your breakfast?  Actually it’s fine if digested slowly: 

  
25

3

BxA
x

y

BxxAy




. 

This looks even worse, doesn’t it?  But remember that it is x and y that 
are known.  If we plot ( xy ) on the vertical, and (x5/2) on the horizontal, 
a straight line appears, and we can read A and B from the y-intercept 
and gradient respectively. 

9.5 Questions 
1. Work out the relative uncertainty when a 5V battery is measured to the 

nearest 0.2V. 

2. If I don’t want to have to correct my watch more than once a week, and I 
never want my watch to be more than 1s from the correct time, calculate 
the necessary maximum relative uncertainty of the electronic oscillator 
which I can tolerate. 

3. My two-storey house is 7.05±0.02m tall.  The ground floor is 3.2±0.01m 
tall.  How tall is the first floor? 

4. I want to measure the resistance of a resistor.  My voltmeter can read up 
to 5V, with an absolute uncertainty of 0.1V.  My ammeter can read up to 
1A with an absolute uncertainty of 0.02A.  Assuming that my resistor is 
approximately 10Ω, calculate the absolute uncertainty of the resistance I 
measure using the formula R=V/I.  Assume that I choose the current to 
make the relative uncertainty as small as possible. 
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10 Appendix 

10.1 Multiplying Vectors 
Physics is riddled with quantities which have both magnitude and 
direction – velocity, acceleration, displacement, force, momentum, 
angular velocity, torque, and electric field to name but eight.  When 
describing these, it is very useful to use vector notation.  At best this 
saves us writing out separate equations for each of the components.  
While the addition and subtraction of vectors is reasonably 
straightforward (you add, or subtract, the components to get the 
components of the result), multiplication is more tricky.   

You can think of a vector as a little arrow.  You can add them by stacking 
them nose-to-tail, or subtract them by stacking them nose-to-nose.  But 
how do you go about multiplying them?  It is not obvious!  

To cut a long story short, you can’t do it unambiguously.  However there 
are two vector operators which involve multiplication and are useful in 
physics.  Ordinary multiplication is commonly written with either the 
cross (×) or dot (●), so when it comes to vectors we call our two different 
‘multiplication’ processes the dot product and cross product to 
distinguish them.  These are the closest we get to performing 
multiplication with vectors.   

10.1.1 The Dot product (or scalar product) 
A ton of bricks is lifted a metre, then moved horizontally by 2m.  How 
much work is done?  Work is given by the product of force and distance, 
however only the vertical lifting (not the horizontal shuffling) involves 
work.  In this case the work is equal to the weight (about 9.8kN) 
multiplied by the vertical distance (1m). 

This gives us one useful way of ‘multiplying’ vectors – namely to multiply 
the magnitude of the first, by the component of the second which is 
parallel to the first. 

If the two vectors are A and B, with magnitudes A and B, and with an 
angle  between them, then the component of B parallel to A is Bcos.  
Therefore the dot product is given by ABcos. 

  cosAB BA  (1) 

Notice that the dot product of two vectors is itself a scalar.  Note that 
when we talk about the square of a vector, we mean its scalar product 
with itself.  Since in this case, =0, this is the same as the square of the 
vector’s magnitude. 
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The dot product is also commutative, in other words, the order of the two 
vectors A and B does not matter, since A●B=B●A. 

The dot product of two vectors written using Cartesian co-ordinates is 
particularly easy to calculate.  If we use i, j, and k to represent the unit 
vectors pointing along the +x, +y and +z axes, then 

 

   

cwbvau

cwcvcu

bwbvbu

awavauwvucba







kkjkik

kjjjij

kijiiikjikji

 (2) 

10.1.2 The Cross product (or vector product) 
If the dot product produced a scalar, what are we to do if a vector is 
needed as the result of our multiplication?  Answer: a cross product. 

Our first dilemma is to choose the direction of the result.  Given that the 
vectors will, in general, not be parallel or antiparallel, we can’t choose 
the direction of one of them – that would not be fair!  The two vectors will 
usually define a plane, so perhaps we could use a vector in this plane as 
the result?  No, that wouldn’t do either – there is still an infinite number 
of directions to choose from!  A solution is presented if we choose the 
vector perpendicular to this plane.  This narrows the choice down to two 
directions – and we use a convention to choose which. 

Notice that the result of the cross product must be zero if the two vectors 
are parallel, since in this case we can’t define a plane using the vectors.  
It follows that the cross product of a vector with itself is zero.  This 
means that we aren’t going to be interested in the component of the 
second vector which is parallel to the first when calculating the product.  
On the contrary, it is the perpendicular component which matters. 

The cross product of two vectors is defined as the magnitude of the first, 
multiplied by the component of the second which is perpendicular to the 
first.  The product is directed perpendicular to both vectors.  To be more 
precise, imagine a screw attached to the first vector.  The cross product 
goes in the direction the screw advances when the first vector is twisted 
to line up with the second.  The cross product of a vector lying along the 
+x axis with one lying along the +y axis is one lying along the +z axis.  
The cross product of ‘up’ with ‘forwards’ is ‘left’. 

  sinABBA  (3) 

With a definition as obtuse as this, you could be forgiven for wondering 
whether it had any practical use at all!  However they turn out to be very 
useful in physics – especially when dealing with magnetic fields and 
rotational motion. 
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Notice that, where the dot product was commutative, the cross product is 
anticommutative.  In other words, A×B=–B×A, so make sure you don’t 
swap the vectors over inadvertently. 

The vector product of vectors written in Cartesian form can also be 
calculated: 

 

   
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0

0

0

(4) 

where the most convenient way of remembering the result is as the 
determinant of the 3×3 matrix shown. 
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10.2 Dimensional Analysis 
If you look back at the ‘flow equation’ (24 in section 1.3.3), you will see 
something interesting about the units. 

 Current (A) = Charge density (C/m3)  Area (m2)  Speed (m/s) 

If we ‘do algebra’ with the units on the right hand side, we get 

  A
s

C

s

m
m

m

C
 2

3
, 

and this agrees with the units of the left hand side.  Now this may all 
seem pretty obvious, but it gives us a useful procedure for checking 
whether our working is along the right lines.  If, during your calculations, 
you find yourself adding a charge of 3C to a distance of 6m to get a 
result of 9N; or you multiply a speed of 13m/s by a time of 40s and get a 
current of 520A; then in either case you must have made a mistake! 

We can also use the principle that units must balance to guess the form 
of an equation we do not know how to derive.  For example, you may 
guess that the time period of a simple pendulum might depend on the 
length of the pendulum L, the strength of the local gravity g and the 
mass of the pendulum bob m.  Now 

 L is measured in m 
 g is measured in N/kg or m/s2 
 m is measured in kg, 
 and we want a time period, which will be measured in s. 

The only way these measurements can be combined to make something 
in seconds is to take L, divide it by g (this gives something in s2) and 
then take the square root.  Therefore, without knowing any physics of the 
simple harmonic oscillator, we have shown that the time period of a 
pendulum is related to gL  and will be independent of the mass m. 

Similarly, notice what happens if you multiply ohms by farads: 

  s
A

C

V

C

A

V
F  . 

Yes, you get seconds.  Therefore, it should come as little surprise to you 
that if you double the resistance of a capacitor-resistor network, it will 
take twice as long to charge or discharge.  Furthermore, you have 
worked this out without recourse to calculus or the tedious electrical 
details of section 6.1.2.2. 
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Of course, one drawback of the method presented here is that some 
quantities have two different units.  For example, gravitational field 
strength could be N/kg or m/s2.  Electric field strength could be N/C or 
V/m.  How do you know which to choose?  The answer is that if you 
restrict yourself to using the minimum number of units in your working, 
and express all others in terms of them, you will not have any difficulties.  
Usually people choose m, s, kg and A but any other combination of 
independent units33 will do equally well.34   

In books you may see folk use L, T, M, I and  to represent the 
‘dimensions’ of length, time, mass, electric current and temperature.  
This is just a more formal way of doing what we have done here using 
the S.I. units.  In these books, the dimension of speed would be written 
as 

  [speed] =  L T1,  

and the dimensions of force would be written  

  [force] = M L T2, 

where the square brackets mean ‘dimensions of’.  Technically, this is 
more correct than using the S.I. units, because some quantities are 
dimensionally the same, but have very different meanings (and hence 
units).  For example, torque and energy have the same dimensions, but 
you wouldn’t want to risk confusing them by using the same unit for both.  
Similarly an angle in radians has no dimensions at all (being a an arc 
length in metres divided by a radius in metres), but we wouldn’t want to 
confuse it with an ordinary number like 3.35 

                                            

33 By independent we mean that no one unit can be derived entirely from a combination of the 
others.  For example, m, s, kg and J would be no good as a set of four since J can already be 
expressed in terms of the others J = kg  (m/s)2, and hence we have ambiguity arising as to 
how we express quantities. 

34 OK, if you want to do work where there are electric currents and temperatures as well as 
mechanical quantities, you might need to go up to five (an extra one for temperature). 

35 Indeed, quantities with ‘no units’ are usually said to have the dimensions of the number 
one. Thus [angle] = 1.  It follows that angular velocity has dimensions of [angle][time] = 1T 
= T1.  This comes from the property 1 has in being the ‘unity’ operator for multiplication. 


