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3 Rotation 
Rotational motion is all around us [groan] – from the acts of subatomic 
particles, to the motion of galaxies.  Calculations involving rotations are 
no harder than linear mechanics; however the quantities we shall be 
talking about will be unfamiliar at first.  Having already studied linear 
mechanics, you will be at a tremendous advantage, since we shall find 
that each ‘rule’ in linear mechanics has its rotational equivalent. 

3.1 Angle 
In linear mechanics, the most fundamental measurement is the position 
of the particle.  The equivalent base of all rotational analysis is angle: the 
question “How far has the car moved?” being exchanged for “How far 
has the wheel gone round?” – a question which can only be answered 
by giving an angle.  In mechanics, the radian is used for measuring 
angles.  While you may be more familiar with the degree, the radian has 
many advantages.   

We shall start, then by defining what we mean by a radian.  Consider a 
sector of a circle, as in the diagram; and let the circle have a radius r.  
The length of the arc, that is the curved line in the sector, is clearly 
related to the angle.  If the angle were made twice as large, the arc 
length would also double.   

Can we use arc length to measure the angle?  Not as it stands, since we 
haven’t taken into account the radius of the circle.  Even for a fixed angle 
(say 30°), the arc will be longer on a larger circle.  We therefore define 

the angle (in radians) as the arc length divided by the 
circle radius.  Alternatively you might say that the angle 
in radians is equal to the length of the arc of a unit circle 
(that is a circle of 1m radius) that is cut by the angle. 

Notice one simplification that this brings.  If a wheel, of 
radius R, rolls a distance d along a road, the angle the 
wheel has turned through is given by d/R in radians.  
Were you to calculate the angle in degrees, there would 

be nasty factors of 180 and  in the answer. 

Before getting too involved with radians, however, we must work out a 
conversion factor so that angles in degrees can be expressed in radians.  
To do this, remember that a full circle (360°) has a circumference or arc 
length of 2r.  So 360°=2 rad.  Therefore, 1 radian is equivalent to 
(360/2)° = (180/)°. 

 


r 

Arc length = r if  is 
measured in rad ians 
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3.2 Angular Velocity 
Having discussed angle as the rotational equivalent of position, we now 
turn our attention to speed.  In linear work, speeds are given in metres 
per second – the distance moved in unit time.  For rotation, we speak of 
‘angular velocity’, which tells us how fast something is spinning: how 
many radians it turns through in one second.  The angular velocity can 
also be thought of as the derivative of angle with respect to time, and as 

such is sometimes written as , however more 
commonly the Greek letter  is used, and the dot 
is avoided.  To check your understanding of this, 
try and show that 1 rpm (revolution per minute) is 
equivalent to /30 rad/s, while one cycle per 
second is equivalent to 2 rad/s. 



Now remember the definition of angle in radians, 
and that the distance moved by a point on the rim 

of a wheel will move a distance s = r when the wheel rotates by an 
angle .  The speed of the point will therefore be given by u = ds/dt = r 
d/dt = r. 

For a point that is not fixed to the wheel, the situation is a little more 
complex.  Suppose that the point has a velocity v, which makes an angle 
 to the radius (as in the figure above).  We then separate v into two 
components, one radial (v cos ) and one rotational (v sin ).  Clearly the 
latter is the only one that contributes to the angular velocity, and 
therefore in this more general case, v sin  = r. 

v 


v sin  

r 

3.3 Angular acceleration 
It should come as no surprise that the angular acceleration is the time 
derivative of , and represents the change in angular velocity (in rad/s) 
divided by the time taken for the change (in s).  It is measured in rad/s2, 
and denoted by  or   or .  For an object fastened to the rim of a 
wheel, the ‘actual’ acceleration round the rim (a) will be given by a=du/dt 
= r d/dt = r, while for an object not fastened, we have a sin  = r.



8 

3.4 Torque – Angular Force 
Before we can start ‘doing mechanics’ with angles, we need to consider 
the rotational equivalent of force – the amount of twist.  Often a twist can 
be applied to a system by a linear force, and this gives us a ‘way in’ to 
the analysis.  We say that the strength of the twist is called the ‘moment’ 
of the force, and is equal to the size of the force multiplied by the 
distance from pivot to the point where the force acts.  A complication 

                                            

8 Here we are not including the centripetal acceleration which is directed towards the centre of 
the rotation. 
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arises if the force is not tangential – clearly a force acting 
along the radius of a wheel will not turn it – and so our 
simple ‘moment’ equation needs modifying.9 

There are two ways of proceeding, and they yield the 
same answer.  Suppose the force F makes an angle  
with the radius.  We can break this down into two 
components – one of magnitude F cos , which is radial 
and does no turning; and the other, tangential 
component (which does contribute to the turning) of 

magnitude F sin .  The moment or torque only includes the relevant 
component, and so the torque is give



r sin   

F 

r 

n by C = Fr sin .   

                                           

The alternative way of viewing the situation is not to measure the 
distance from the centre to the point at which the force is applied.  
Instead, we draw the force as a long line, and to take the distance as the 
perpendicular distance from force line to centre.  The diagram shows 
that this new distance is given by r sin , and since the force here is 
completely tangential, we may write the moment or torque as the product 
of the full force and this perpendicular distance – i.e. C = F r sin , as 
before. 

3.5 Moment of Inertia – Angular Mass 
Of the three base quantities of motion, namely distance, mass and time, 
only time may be used with impunity in rotational problems.  We now 
have an angular equivalent for distance (namely angle), so the next task 
is to determine an angular equivalent for mass. 

This can be done by analogy with linear mechanics, where the mass of 
an object in kilograms can be determined by pushing an object, and 
calculating the ratio of the applied force to the acceleration it caused: m 
= F/a.  Given that we now have angular equivalents for force and 
acceleration, we can use these to find out the ‘angular mass’. 

Think about a ball of mass m fixed to the rim of a wheel that is 
accelerating with angular acceleration .  We 
shall ignore the mass of the wheel itself for now.  
Now let us push the mass round the wheel with a 
force F.  Therefore we calculate the ‘angular 
mass’ I by 

F 


F sin  

 

9 Why force × radius?  We can use a virtual work argument (as in section 1.1.1.4) to help us.  
Suppose a tangential force F is applied at radius r.  When the object moves round by angle , 
it moves a distance d = r, and the work done by the force = Fd = Fr = Fr × angular force 
× angular distance.  Now since energy must be the same sort of thing with rotational motion 
as linear, the rotational equivalent of force must be Fr. 
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


 

where we have used the fact that the mass m will be the ratio of the 
force F to the linear acceleration a, as dictated by Newton’s Second 
Law.  This formula can also be used for solid objects, however in this 
case, the radius r will be the perpendicular distance from the mass to the 
axis.  The total ‘angular mass’ of the object is calculated by adding up 
the I = m r2 from each of the points it is made from. 

Usually this ‘angular mass’ is called the moment of inertia of the object.  
Notice that it doesn’t just depend on the mass, but also on the distance 
from the point to the centre.  Therefore the moment of inertia of an object 
depends on the axis it is spun round. 

An object may have a high angular inertia, therefore, for two reasons.  
Either it is heavy in its own right; or for a lighter object, the mass is a 
long way from the axis. 

3.6 Angular Momentum 
In linear motion, we make frequent use of the ‘momentum’ of objects.  
The momentum is given by mass × velocity, and changes when a force 
is applied to the object.  The force applied, is in fact the time derivative of 
the momentum (provided that the mass doesn’t change).  Frequent use 
is made of the fact that total momentum is conserved in collisions, 
provided that there is no external force acting. 

It would be useful to find a similar ‘thing’ for angular motion.  The most 
sensible starting guess is to try ‘angular mass’ × angular velocity.  We 
shall call this the angular momentum, and give it the symbol L = I .  Let 
us now investigate how the angular momentum changes when a torque 
is applied.  For the moment, assume that I remains constant. 

  CI
dt

d
II

dt

d

dt

dL
   

Thus we see that, like in linear motion, the time derivative of angular 
momentum is ‘angular force’ or torque.  Two of the important facts that 
stem from this statement are: 

1. If there is no torque C, the angular momentum will not change.  
Notice that radial forces have C = 0, and therefore will not change the 
angular momentum.  This result may seem unimportant – but think of the 
planets in their orbits round the Sun.  The tremendous force exerted on 
them by the Sun’s gravity is radial, and therefore does not change their 
angular momenta even a smidgen.  We can therefore calculate the 
velocity of planets at different parts of their orbits using the fact that the 
angular momentum will remain the same.  This principle also holds when 
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scientists calculate the path of space probes sent out to investigate the 
Solar System. 

2. The calculation above assumes that the moment of inertia I of the 
object remains the same.  This seems sensible, after all, in a linear 
collision, the instantaneous change of a single object’s mass would be 
bizarre10, and therefore we don’t need to guard against the possibility of 
a change in mass when we write F = dp/dt. 

 In the case of angular motion, this situation is different.  The 
moment of inertia can be changed, simply by rearranging the mass of 
the object closer to the axis.  Clearly there is no external torque in doing 
this, so we should expect the angular momentum to stay the same.  But 
if the mass has been moved closer to the axis, I will have got smaller.  
Therefore  must have got bigger.  The object will now be spinning 
faster!  This is what happens when a spinning ice dancer brings in 
her/his arms – and the corresponding increase in revs. per minute is well 
known to ice enthusiasts and TV viewers alike. 

To take an example, suppose that all the masses were moved twice as 
close to the axis.  The value of r would halve, so I would be quartered.  
We should therefore expect  to get four times larger.  This is in fact 
what happens. 

3.7 Angular momentum of a single mass moving in a straight 
line 

If we wished to calculate the angular momentum of a planet in its orbit 
round the Sun, we need to know how L is related to the linear speed v.  
This is what we will now work out. 

Using the same ideas as in figure 2, the velocity v will have both radial 
and ‘rotational’ components.  The rotational component will be equal to v 
sin , while the radial component cannot contribute to the angular 
momentum.  It is the rotational component that corresponds to the speed 
of a mass fixed to the rim of a wheel, and as such is equal to radius × 
angular velocity.  Thus v sin  = r .  So the angular momentum 

   sin
sin2 mvr
r

v
mrIL   

                                            

10 Two cautions.  Firstly, in a rocket, the mass of the rocket does decrease as the burnt fuel is 
chucked out the back, however the total mass does not change.  Therefore F=dp/dt=ma still 
works, we just need to be careful that the force F acts on (and only on) the stuff included in 
the mass m.  A complication does arise when objects start travelling at a good fraction of the 
speed of light – but this is dealt with in the section on Special Relativity. 
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is given by the product of the mass, the radius and the rotational (or 
tangential) component of the velocity.   

For an object on a straight line path, this can also be stated (using figure 
3) as the mass × speed × distance of closest approach to centre. 

3.8 Rotational Kinetic Energy 
Lastly, we come to the calculation of the rotational kinetic energy.  We 
may calculate this by adding up the linear kinetic energies of the parts of 
the object as the spin round the axis.  Notice that in this calculation, as 
the objects are purely rotating, we shall assume  = /2 – i.e. there is no 
radial motion. 

    2
2
122

2
12

2
12

2
1  ImrrmmvK   

We see that the kinetic energy is given by half the angular mass × 
angular velocity squared – which is a direct equivalent with the half mass 
× speed2 of linear motion. 

3.9 Summary of Quantities 
Quantity Symbol Unit Definition Other equations 

Angular velocity  rad/s  = d/dt r  = v sin   

Angular 
acceleration 

 rad/s2  = d/dt r  = a sin  

Torque C N m C = F r sin   

Moment of inertia I kg m2 I = C /  I = m r2 

Angular 
momentum 

L kg m2 /s L = I  L = m v r sin  

Rot. Kinetic 
Energy 

K J K = I 2 / 2 K = ½m (v sin )2 
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3.10 Rotational mechanics with vectors 
This section involves much more advanced mathematics, and you will be 
able to get by in Olympiad problems perfectly well without it.  However, if 
you like vectors and matrices, read on... 

So far we have just considered rotations in one plane – that of the paper.  
In general, of course, rotations can occur about any axis, and to describe 
this three dimensional situation, we use vectors.  With velocity v, 
momentum p and force F, there is an obvious direction – the direction of 
motion, or the direction of the ‘push’.  With rotation, the ‘direction’ is less 
clear.   

Imagine a clock face on this paper, with the minute hand rotating 
clockwise.  What direction do we associate with this motion?  Up 
towards 12 o’clock because the hand sometimes points that way?  
Towards 3 o’clock because the hand sometimes points that way?  Both 
are equally ridiculous.  In fact the only way of choosing a direction that 
will always apply is to assign the rotation ‘direction’ perpendicular to the 
clock face – the direction in which the hands never point. 

This has not resolved our difficulty completely.  Should the arrow point 
upwards out of the paper, or down into it?  After thought we realise that 
one should be used for clockwise and one for anti-clockwise motion, but 
which way?  There is no way of proceeding based on logic – we just 
have to accept a convention.  The custom is to say that for a clockwise 
rotation, the ‘direction’ is down away from us, and for anticlockwise 
rotation, the direction is up towards us. 

Various aides-memoire have been presented for this – my favourite is to 
consider a screw.  When turned clockwise it moves away from you: 
when turned anticlockwise it moves towards you.  For this reason the 

convention is sometimes called the 
‘right hand screw rule’. 

With this convention established, we 
can now use vectors for angular 
velocity , angular momentum L, and 
torque C.  Kinetic energy, like in linear 
motion, is a scalar and therefore needs 
no further attention.  The moment of 
inertia I is mor

r sin  r 



e complex, and we shall 
come to that later. 

Let us consider the angular velocity first.  If we already know  and r, 
what is v, assuming that only rotational velocities are allowed?  
Remembering that w must point along the axis of the rotation, we may 
draw the diagram above, which shows that the radius of the circle that 
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our particle actually traces out is r sin  where  is the angle between r 
and .11  This factor of sin  did not arise before in this way, since our 
motion was restricted to the plane which contained the centre point, and 
thus  = /2 for all our 2-dimensional work.  Therefore the velocity is 
equal to w multiplied by the radius of the circle traced out, i.e. v =  r sin 
.  This may be put on a solid mathematical foundation using the vector 
cross product namely v = ×r.  This is our first vector identity for 
rotational motion. 

the acceleration.  We come to the 
corresponding conclusion a =  × r.12 

t C = r × F.  Similarly, from L = (mv) r sin  = 
p r sin , we set L = r × p.   

With these three vector equations we may get to work.  Firstly, notice: 

 

By a similar method, we may analyse 

Next we tackle torque.  Noting our direction convention, and our earlier 
equation C = F r sin , we se

    CFrarvr0prpvprL  mm
dt

d

dt

d

dt

d

dt

d
 

The time derivative of angular momentum is the torque, as before.  
Notice too that the (v×p) term disappears since p has the same direction 
as v, and the vector cross product of two parallel vectors is zero. 

3.10.

d by the vectors  or .  Our aim is to 
find the matrix that does the job. 

 also use the mathematical result that 
for any three vectors A, B and C, 

1.1 General Moment of Inertia 
Our next task is to work out the moment of inertia.  This can be more 
complex, since it is not a vector.  Previously we defined I by the 
relationships C = I , and also used the expression L = I .  Now that C, 
, L and  are vectors, we conclude that I must be a matrix, since a 
vector is made when I is multiplie

For this, we use our vector equations v =  × r and C = r × F, we let the 
components of r be (x,y,z), and we

     CBABCACBA  . 

                                            

11 We use  to represent the angle between r and , to distinguish it from the angle  between 
r and v, which is of course a right angle for a strict rotation. 

12 This intentionally does not include the centripetal acceleration, as before.  If you aim to 
calculate this a from the former equation v =  × r, then you get a = dv/dt = d(×r)/dt = ×r + 
×v = ×r + ×(×r) = ×r +  (r.) – r 2.  The final two terms in this equation deal with the 
centripetal acceleration.  However in real situations, the centripetal force is usually provided 
by internal or reaction forces, so often problems are simplified by not including it. 
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This result looks horrible.  However let us simplify matters by aligning 
our axes so that the z axis is the axis of the acceleration . In other 
words  = (0,0,).  We now have 

   α

yx

yz

xz

m





















22

C

which is a little better.  Notice that it is still pretty nasty in that the torque 
required to cause this z-rotation acceleration is not necessarily in the z-
direction!  Another consequence of this is that the angular momentum L 
is not necessarily parallel to the angular velocity .  However for many 
objects, we rotate them about an axis of symmetry.  In this case the xz 
and yz terms become zero when summed for all the masses in the 
object, and what we are left with is the mass multiplied by the distance 
from the axis to the masses (that is x2 + y2).  Alternatively, for a flat 
object (called a lamina) which has no thickness in the z direction, the xz 
and yz terms are zero anyway, because z=0.  

At this point, you are perfectly justified in saying ‘yuk’ and sticking to two-
dimensional problems.  However this result we have just looked at has 
interesting consequences.  When a 3-d object has little symmetry, it can 
roll around in some very odd ways.  Some of the asteroids and planetary 
moons in our Solar System are cases in point. 

The moment of inertia can also be obtained from the rotational 
momentum, however, the form is identical to that worked out above from 
Newton’s second law, as shown here. 
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vrprL
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The calculation then proceeds as before. 
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3.10.1.2 General Kinetic Energy 

Our final detail is kinetic energy.  This can be calculated using v =  × r, 
and the vector rule that    ΑCBCBA  . 
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For the cases where I can be simplified, this reduces to the familiar form 
K = I 2/2. 

3.11 Motion in Polar Co-ordinates 
When a system is rotating, it often makes sense to use polar co-
ordinates.  In other words, we characterise position by its distance from 
the centre of rotation (i.e. the radius r) and by the angle  it has turned 
through.  Conversion between these co-ordinates and our usual 
Cartesian (x,y) form are given by simple trigonometry: 

  



sin

cos

ry

rx




 (1) 

 



r

x 

y 

r̂

θ̂

 

When analysing motion problems, though, there are complications if 
polar co-ordinates are used.  These stem from the fact that the 
‘increasing r’ and ‘increasing ’ directions themselves depend on the 
value of , as we shall see.  Let us start by defining the vector r to be the 
position of a particle relative to some convenient origin.  The length of 
this vector r gives the distance from particle to origin.  We define  to be 
a unit vector parallel to r.  Similarly, we define the vector θ  to be a unit 
vector pointing in the direction the particle would have to go in order to 
increase  while keeping r constant.  Let us now evaluate the time 
derivative of r – in other words, let’s find the velocity of the particle: 

r̂
ˆ
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d
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dt

d r
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r
r

ˆ
ˆ

ˆ
ˆ

ˆ
  , (2) 

where we have used the dot above a letter to mean ‘time derivative of’.  
Now if the particle does not change its , then the direction  will not 
change either, and we have a velocity given simply by .  We next 
consider the case when r doesn’t change, and the particle goes in a 
circle around the origin.  In this case, our formula would say that the 

velocity was 

r̂
r̂r

dt

d
r

r̂
.  We know from section 3.2 that in this case, the 

speed is given by r, that is , so the velocity will be .  In order to 
make this agree with our equation for dr/dt, we would need to say that  

r θ̂r

 θr ˆˆ 
dt

d
. (3) 

Does this make sense?  If you think about it for a moment, you should 
find that it does.  Look at the diagram below.  Here the angle  has 
changed a small amount .  The old and new r  vectors are shown, and 
form two sides of an isosceles triangle, the angle between them being 
.  Given that the sides r  have length 1, the length of the third side is 
going to be approximately equal to  (with the approximation getting 
better the smaller  is).  Notice also that the third side – the vector 
corresponding to  is pointing in the direction of θ .  This allows 

us to justify statement (1). 

ˆ

ˆ

oldnew rr ˆˆ  ˆ

 r 

θ̂

oldr̂newr̂



 

In a similar way, we may show that 

  rθ ˆˆ 
dt

d
. (4) 

Remembering that our velocity  is given by 

  , θrrv ˆˆ  rr 

we may calculate the acceleration as 
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. (5) 

Now suppose that a force acting on the particle (with mass m), had a 
radial component Fr, and a tangential component F.  We could then 
write 

  
 
 
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




rrmF

rrmFr

2

2





. (6) 

There are many consequences of these equations for rotational motion.  
Here are three: 

1. For an object to go round in a circle (that is r staying constant, so that 
), we require a non-zero radial force .  The minus 

sign indicates that the force is to be in the opposite direction to r, in 
other words pointing towards the centre.  This, of course, is the 
centripetal force needed to keep an object going around in a circle at 
constant speed. 

0 rr  2mrFr 

2. If the force is purely radial (we call this a central force), like gravitational 
attraction, then F= 0.  It follows that 

  

 










2

2 2

20

mr
dt

d

rmrmr

rmmr







, (7) 

and accordingly the angular momen 2mr  does not 
change.  This ought to be no surprise, since we found in section 3.6 
that angular momenta are only changed if there is a torque, and a 
radial force h

tum 

as zero torque. 

(6): 

2mr 

3. One consequence of the conservation of angular momentum is the 
apparently odd behaviour of an object coming obliquely towards the 
centre (that is, it gets closer to the origin, but is not aimed to hit it).  
Since r decreases,  must increase, and this is what happens – in fact 
the square term causes  to quadruple when r halves. 

  We can analyse this in terms of forces using  r2  

when F= 0.  Since r is decreasing, while  increases, the non-zero 
value of the rm2  term gives rise to a non-zero  , and hence an 
acceleration of rotation.  If you were sitting next to the particle at the 


rmF 
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time, you would wonder what caused it to speed up, and you would 
think that there must have been a force acting upon it.   

This is another example of a fictitious force (see section 1.1.3), and is 
called the Coriolis force.  It is used, among other things, to explain why 
the air rushing in to fill a low pressure area of the atmosphere begins to 
rotate – thus setting up a ‘cyclone’.  Some people have attempted to 
use the equation to explain the direction of rotation of the whirlpool you 
get above the plughole in a bath.   

Put very bluntly – the Coriolis force is the force needed to ‘keep’ the 
object going in a true straight line.  Of course, a stationary observer 
would see no force – after all things go in straight lines when there are 
no sideways forces acting on them.  The perspective of a rotating 
observer is not as clear – and this Coriolis force will be felt to be as real 
as the centrifugal force discussed in section 1.1.3.1. 

3.12 Motion of a rigid body 
When you are dealing with a rigid body, things are simplified in that it 
can only do two things – move in a line and rotate.  If forces Fi are 
applied to positions ri on a solid object free to move, its motion is 
completely described by 

 a linear acceleration given by Mi Fa , where M is the total 

mass of the body, and 

 a rotational acceleration given by Iii  Frα  about a point 

called the centre of mass, where ri’ is the position of point i 
relative to the centre of mass and I is the moment of inertia of 
the object about the axis of rotation.13 

This means, among other things, that the centre of mass itself moves as 
if it were a point particle of mass M.  In turn, if a force is applied to the 
object at the centre of mass, it will cause the body to move with a linear 
acceleration, without any rotational acceleration at all. 

The proof goes as follows.  Suppose the object is made up of lots of 
points ri (of mass mi) fixed together.  It follows that Newton’s second law 
states (as in section 1.1.1.2) 

                                            

13 This assumes that the angular acceleration is a simple speeding up or slowing down of an 
existing rotation.  If  and  are not parallel, the situation is more complex. 
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Now suppose we define the position R such that MR =  mi ri, then it 
follows that 

  total2

2

F
R


dt

d
M  

and the point R moves as if it were a single point of mass M being acted 
on by the total force.  This position R is called the centre of mass. 

Given that we already know that R does not have any rotational motion, 
this must be the centre of rotation, and we can use the equation from 
section 3.10 to show that the rate of change of angular momentum of the 
object about this point, d(I)/dt, is equal to the total torque  (ri – R)×Fi 
acting on the body about the point R.  Given that the masses don’t 
change, we may write 
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The final term sums to zero since fij+fji=0, and the internal forces 
between two particles must either constitute a repulsion, an attraction or 
the two forces must occur at the same place.  In any of these cases fij × 
(ri–rj) = 0.   

If we now express the positions ri in terms of the centre of mass position 
R and a relative position ri’, where ri = R + ri’ (so ai = A+ai’), then 
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since miri’ = mi(ri–R) = MR – MR = 0.  Now, as shown earlier, 
  iiiiiiiiiiii mmmdtmd araruuur  0 , and so 
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and so the rate of change of angular momentum about the centre of 
mass is given by the total moment of the external forces about the centre 
of mass. 

3.13 Questions 
1. A car has wheels with radius 30cm.  The car travels 42km.  By what angle 

have the wheels rotated during the journey?  Make sure that you give your 
answer in radians and in degrees. 

2. Why does the gravitational attraction to the Sun not change the angular 
momentum of the Earth? 

3. Calculate the speed of a satellite orbiting the Earth at a distance of 42 
000km from the Earth’s centre. 

4. A space agency plans to build a spacecraft in the form of a cylinder 50m in 
radius.  The cylinder will be spun so that astronauts inside can walk on the 
inside of the curved surface as if in a gravitational field of 9.8 N/kg.  
Calculate the angular velocity needed to achieve this. 

5. A television company wants to put a satellite into a 42 000km radius orbit 
round the Earth.  The satellite is launched into a circular low-Earth orbit 
200km above the Earth’s surface, and a rocket motor then speeds it up.  It 
then coasts until it is in the 42000km orbit with the correct speed.  How 
fast does it need to be going in the low-Earth orbit in order to coast up to 
the correct position and speed? 

6. Estimate the gain in angular velocity when an ice-skater draws her hands 
in towards her body. 
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7. One theory of planet formation says that the Earth was once a liquid 
globule which gradually solidified, and its rotation as a liquid caused it to 
bulge outwards in the middle – a situation which remains to this day: the 
equatorial radius of the Earth is about 20km larger than the polar radius.  If 
the theory were correct, what would the rotation rate of the Earth have 
been just before the crust solidified?  Assume that the liquid globule was 
sufficiently viscous that it was all rotating at the same angular velocity. 

 


