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2 Fast Physics 
Imagine a summer’s day.  You are sunbathing by the side of a busy 
motorway while you wait for a pickup truck to rescue your car, which has 
broken down.  All of a sudden, an irresponsible person throws a used 
drinks can out of their car window, and it heads in your direction.  To 
make things worse, they were speeding at the time.  Ouch. 

The faster the car was going, the more it will hurt when the can hits you.  
This is because the can automatically takes up the speed the car was 
travelling at.  Suppose the irresponsible person could throw the can at 
10mph, and their car is going at 80mph.  The speed of the can, as you 
see it, is 90mph if it was thrown forwards, and 70mph if it was thrown 
backwards. 

To sum this up,  

Velocity as measured by you = Velocity of car + Velocity of throwing  

where we use velocities rather than speeds so that the directionality can 
be taken into account. 

So far, this probably seems very obvious.  However, let’s extend the 
logic a bit further.  Rather than a car, let us have a star, and in place of 
the drinks can, a beam of light.  Many stars travel towards us at high 
speeds, and emit light as they do so.  We can measure the speed of this 
light in a laboratory on Earth, and compare it with the speed of ‘ordinary’ 
light made in a stationary light bulb.  And the worrying thing is that the 
two speeds are the same. 

No matter how hard we try to change it, light always goes at the same 
speed.4  This tells us that although our ideas of adding velocities are 
nice and straightforward, they are also wrong.  In short, there is a 
problem with the Newtonian picture of motion.  This problem is most 
obvious in the case of light, but it also occurs when anything else starts 
travelling very quickly. 

While this is not the way Einstein approached the problem, it is our way 
into one of his early theories – the Special Theory of Relativity – and it is 
part of the Olympiad syllabus. 

Before we go further and talk about what does happen when things go 
fast, please be aware of one thing.  These observations will seem very 
                                            

4 Light does travel different speeds in different materials.  However if the measurement is 
made in the same material (say, air or vacuum) the speed registered will always be the same, 
no matter what we do with the source. 
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weird if you haven’t read them before.  But don’t dismiss relativity as 
nonsense just because it seems weird – it is a better description of 
Nature than classical mechanics – and as such it demands our respect 
and attention. 

2.1 The Principle of Relativity 
The theory of special relativity, like all theories, is founded on a premise 
or axiom.  This axiom cannot be ‘derived’ – it is a guessed statement, 
which is the starting point for the maths and the philosophy.  In the case 
of special relativity, the axiom must be helpful because its logical 
consequences agree well with experiments. 

This principle, or axiom, can be stated in several ways, but they are 
effectively the same. 

1. There is no method for measuring absolute (non-relative) velocity.  
The absolute speed of a car cannot be measured by any method at 
all.  On the other hand, the speed of the car relative to a speed 
gun, the Earth, or the Sun can all be determined.  

2. Since it can’t be measured – there is no such thing as absolute 
velocity. 

3. The ‘laws of physics’ hold in all non-accelerating laboratories5, 
however ‘fast’ they may be going.  This follows from statement 2, 
since if experiments only worked for one particular laboratory 
speed, that would somehow be a special speed, and absolute 
velocities could be determined relative to it. 

4. Maxwell’s theory of electromagnetism, which predicts the speed of 
light, counts as a law of physics.  Therefore all laboratories will 
agree on the speed of light.  It doesn’t matter where or how the 
light was made, nor how fast the laboratory is moving. 

2.2 High Speed Observations 
In this section we are going to state what relativity predicts, as far as it 
affects simple observations.  Please note that we are not deriving these 
statements from the principles in the last section, although this can be 
done. For the moment just try and understand what the statements 
mean.  That is a hard enough job.  Once you can use them, we shall 
then worry about where they come from.   

                                            

5 We say non-accelerating for a good reason.  If the laboratory were accelerating, you would 
feel the ‘inertial force’, and thus you would be able to measure this acceleration, and indeed 
adjust the laboratory’s motion until it were zero.  However there is no equivalent way of 
measuring absolute speed. 
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2.2.1 Speeding objects look shortened in the direction of 
motion. 

A metre stick comes hurtling towards you at high speed.  With a clever 
arrangement of cameras and timers, you are able to measure its length 
as it passes you.  If the stick’s length is perpendicular to the direction of 
travel, you still measure the length as 1 metre. 

However, if the stick is parallel to its motion, it will seem shorter to you.  
If we call the stick’s actual length (as the stick sees it) as L0, and the 
apparent length (as you measure it) La, we find 
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2
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where u is the speed of the metre stick relative to the observer.  The 
object in the square root appears frequently in relativistic work, and to 
make our equations more concise, we write 
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so that equation (1) appears in shorter form as  

  


0L
La  . (3) 

2.2.2 Speeding clocks tick slowly 
A second observation is that if a clock whizzes past you, and you use 
another clever arrangement of timers and cameras to watch it, it will 
appear (to you) to be going slowly. 

We may state this mathematically.  Let T0 be a time interval as 
measured by our (stationary) clock, and let Ta be the time interval as we 
see it measured by the whizzing clock. 

  


0T
Ta    (4) 

2.2.3 Slowing and shrinking go together 
Equations (3) and (4) are consistent – you can’t have one without the 
other.  To see why this is the case, let us suppose that Andrew and Betty 
both have excellent clocks and metre sticks, and they wish to measure 
their relative speed as they pass each other.  They must agree on the 
relative speed.  Andrew times how long it takes Betty to travel along his 
metre stick, and Betty does the same.   
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The question is: how does Andrew settle his mind about Betty’s 
calculation?  As far as he is concerned, she has a short metre stick, and 
a slow clock – how can she possibly get the answer right!  Very easily – 
providing that her clock runs ‘slow’ by the same amount that her metre 
stick is ‘short’6. 

An experimental example may help clarify this.  Muons are charged 
particles that are not stable, and decay with a half-life of 2s.  Because 
they are charged, you can accelerate them to high speeds using a large 
electric field in a particle accelerator.  You can then measure how far 
they travel down a tube before decaying.  Given that ‘the laws of physics 
are the same in all reference frames’, this must mean that muon and 
experimenter agree on the position in the tube at which the muon passes 
away.   

The muon gets much further down the tube than a classical calculation 
would predict, however the reason for this can be explained in two ways: 

 According to the experimenter, the muon is travelling fast, so it has 
a slow clock, and therefore lives longer – so it can get further. 

 According to the muon, it still has a woefully short life, but the tube 
(which is whizzing past) is shorter so it appears to get further along 
in the 2s. 

For the two calculations to agree, the ‘clock slowing’ must be at the 
same rate as the ‘tube shrinkage’. 

2.2.4 Speeding adds weight to the argument 
The most useful observation of them all, as far as the Olympiad syllabus 
is concerned is this: if someone throws a 1kg bag of sugar at you at high 
speed, and you (somehow) manage to measure its mass as it passes, 
you will register more than 1kg. 

If the actual mass of the object is M0, and the apparent mass is Ma, we 
find that 

  0MM a  . (5) 

The actual mass is usually called the ‘rest mass’ – in other words the 
mass as measured by an observer who is at rest with respect to the 
object. 

                                            

6 Note that ‘slow’ and ‘short’ are placed in quotation marks.  Betty’s clock and metre stick are 
not defective – however to Andrew they appear to be. 
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2.2.4.1 The Universal Speed Limit 
This formula has important consequences.  First of all, this is the origin 
of the ‘universal speed limit’, which is a well-known consequence of 
special relativity.  This states that you will never measure the speed of 
an object (relative to you) as being greater than the speed of light. 

Let us pause for a moment to see why.  Suppose the object concerned 
is an electron in a particle accelerator (electrons currently hold the speed 
record on Earth for the fastest humanly accelerated objects).  It starts at 
rest with a mass of about 10-30 kg.   We turn on a large, constant electric 
field, and the electron starts to move relative to the accelerator.  
However, as it gets close to the speed of light, it starts to appear more 
massive.  Therefore since our electric field (hence accelerating force) is 
constant, the electron’s acceleration decreases.  In fact, the acceleration 
tends to zero as time passes, although it never reaches zero exactly 
after a finite time.  We are never able to persuade the electron to break 
the ‘light-barrier’, since when , cu   , and the apparent mass 
becomes very large (so the object becomes impossible to accelerate any 
further).  

Please note that this does not mean that faster-than-light speeds can 
never be obtained.  If we accelerate one electron to 0.6c Eastwards, and 
another to 0.6c Westwards, the approach speed of the two electrons is 
clearly superlumic (1.2c) as we measure it with Earth-bound 
speedometers.  However, even in this case we find that the velocity of 
one of the electrons as measured by the other is still less than the speed 
of light.  This is a consequence of our first observation – namely that 
relative velocities do not add in a simple way when the objects are 
moving quickly. 

In fact the approach speed, as the electrons see it, is 0.882c.  If you 
want to perform these calculations, the formula turns out to be 

  
21 cuu

uu
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BCAB

BCAB
AC 


 , (6) 

where uAB means the velocity of B as measured by A.  Equation (6) only 
applies when all three relative velocities are parallel (or antiparallel). 

2.2.4.2 Newton’s Law of motion 
Our second consequence is that we need to take great care when using 
Newton’s laws.  We need to remember that the correct form of the 
second law is  

  momentum
dt

d
F   (7) 
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Why is care needed?  Look closely for the trap – if the object speeds up, 
its mass will increase.  Therefore the time derivative of the mass needs 
to be included as well as the time derivative of the velocity.  We shall 
postpone further discussion until we have had a better look at 
momentum. 

2.3 Relativistic Quantities 
Now that we have mentioned the business of relativistic mass increase, 
it is time to address the relativistic forms of other quantities. 

2.3.1 Momentum 
Momentum is conserved in relativistic collisions, providing we define it as 
the product of the apparent mass and the velocity. 

  up 0m  (7) 

Notice that when you use momentum conservation in collisions, you will 
have to watch the  factors.  Since these are functions of the speed u, 
they will change if the speed changes. 

2.3.2 Force 
The force on a particle is the time derivative of its momentum.  Therefore 

  


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 

dt

d

dt

d
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dt

d  uupF 0 . (8) 

In the case where the speed is not changing,  will stay constant, and 
the equation reduces to the much more straightforward F=m0a.  One 
example is the motion of an electron in a magnetic field. 

2.3.3 Kinetic Energy 
Now that we have an expression for force, we can integrate it with 
respect to distance to obtain the work done in accelerating a particle.  As 
shown in section 1.1.1, this will give the kinetic energy of the particle.  
We obtain the result7 

                                            

7 If you wish to derive this yourself, here are the stages you need.  Firstly, differentiate  with 
respect to u to convince yourself that  
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Using this result, the derivation can be completed (see over the page): 
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    2
01 cmK   . (9) 

This states that the gain in energy of a particle when accelerated is 
equal to the gain in mass × c2.  From this we postulate that any increase 
in energy is accompanied by a change in mass.  The argument works 
backwards too.  When stationary, the particle had mass m0.  Surely 
therefore, it had energy m0c

2 when at rest. 

We therefore write the total energy of a particle as  

  . (10) 2
0

2
0 cmcmKE 

2.3.4 A Relativistic Toolkit 
We can derive a very useful relationship from (10), (7) and the definition 
of : 
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This is useful, since it relates E and p without involving the nasty  factor.  
Another equation which has no gammas in it can be derived by dividing 
momentum by total energy: 
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, (12) 

which is useful if you know the momentum and total energy, and wish to 
know the speed. 

2.3.5 Tackling problems 
If you have to solve a ‘collision’ type problem, avoid using speeds at all 
costs.  If you insist on having speeds in your equations, you will also 
have gammas, and therefore headaches.  So use the momenta and 
energies of the individual particles in your equations instead.  Put more 
bluntly, you should write lots of ‘p’s, and ‘E’s, but no ‘u’s.  Use the 
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conservation laws to help you.  In relativistic work, you can always use 
the conservation of E – even in non-elastic collisions.  The interesting 
thing is that in an inelastic collision, you will find the rest masses greater 
after the collision. 

To obtain the values you want, you need an equation which relates E 
and p, and this is provided by (11).  Notice in particular that the quantity 

 when applied to a group of particles has two things to 

commend it. 

    222
cpE  

 Firstly, it is only a function of total energy and momentum, and 
therefore will remain the same before and after the collision. 

 Secondly, it is a function of the rest masses (see equation 11) and 
therefore will be the same in all reference frames. 

Finally, if the question asks you for the final speeds, use (12) to calculate 
them from the momenta and energies. 

2.4 The Lorentz Transforms 
The facts outlined above (without the derivations) will give you all the 
information you need to tackle International Olympiad problems.  
However, you may be interested to find out how the observations of 
section 2.2 follow from the general assumptions of section 2.1.  A full 
justification would require a whole book on relativity, however we can 
give a brief introduction to the method here. 

We start by stating a general problem.  Consider two frames of reference 
(or co-ordinate systems) – Andrew’s perspective (t,x,y,z), and Betty’s 
perspective (t’,x’,y’,z’).  We assume that Betty is shooting past Andrew in 
the +x direction at speed v.  Suppose an ‘event’ happens, and Andrew 
measures its co-ordinates.  How do we work out the co-ordinates Betty 
will measure? 

The relationship between the two sets of co-ordinates is called the 
Lorentz transformation, and this can be derived as shown below: 

2.4.1 Derivation of the Lorentz Transformation 
We begin with the assumption that the co-ordinate transforms must be 
linear.  The reason for this can be illustrated by considering length, 
although a similar argument works for time as well.  Suppose that 
Andrew has two measuring sticks joined end to end, one of length L1 
and one of length L2.  He wants to work out how long Betty reckons they 
are.  Suppose the transformation function is T.  Therefore Betty 
measures the first rod as T(L1) and the second as T(L2).  She therefore 
will see that the total length of the rods is T(L1) + T(L2).  This must also 
be equal to T(L1+L2), since L1+L2 is the length of the whole rod 
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according to Andrew.  Since T(L1+L2) = T(L1) +T(L2), the transformation 
function is linear. 

We can now get to work.  Let us consider Betty’s frame of reference to 
be moving in the +x direction at speed v, as measured by Andrew.  Betty 
will therefore see Andrew moving in her –x direction at the same speed.  
To distinguish Betty’s co-ordinates from Andrew’s, we give hers dashes. 

Given the linear nature of the transformation, we write 
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where A, B, C and D are functions of the relative velocity +v (i.e. Betty’s 
velocity as measured by Andrew). 

There must also be an inverse transformation 
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where d is the determinant of the first matrix. 

Now this second matrix is in itself a transformation for a relative velocity 
–v, and therefore should be of a very similar form to the first matrix.  We 
find that the only way we can ensure that there is symmetry between the 
two is to make the determinant equal to one (d=1).  We shall therefore 
assume this from here on. 

Next we consider what happens if x’=0.  In other words we are tracing 
out Betty’s motion as Andrew sees it.  Therefore we must have x=vt.  
Using the first matrix, this tells us that B=-vA.  A similar argument on the 
second matrix – where we must have x’=-vt’ where Betty now watches 
Andrew’s motion [x=0], gives –Dv = B = -vA.  Therefore A=D. 

We now have B and D expressed in terms of A, so the next job is to 
work out what C is.  This can be done since we know that the 
determinant AD – BC = 1.  Therefore we find that  

vA

A
C

21
 . 
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Summarizing, our matrix is now expressed totally in terms of the 
unknown variable A.  We may calculate it by remembering that both 
Andrew and Betty will agree on the speed of travel, c, of a ray of light.  
Andrew will express this as x=ct, Betty would say x’=ct’, but both must 
be valid ways of describing the motion.  Therefore 
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This concludes our reasoning, and gives the Lorentz transforms (after a 
little algebra to evaluate C) as: 
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We have not considered any other dimensions here, however the 
transformation here is easy since Andrew and Betty agree on all lengths 
in the y and z directions.  In other words y’=y, z’=z.  This is a necessary 
consequence of the principle of relativity:  the distance between the ends 
of a rod held perpendicular to the direction of motion can be measured 
simultaneously in all frames of reference. If this agreed measurement 
was different to that of an identical rod in a different frame, the observers 
would be able to work out which of them was ‘moving’ and which of them 
was still. 

 Page 33 



  Corrections March 2007 

2.4.2 Using the Lorentz Transforms 
Having these transforms at our disposal, we can now derive the 
‘shrinking rod’ and ‘slowing clock’ equations. 

Suppose Betty is holding a stick (of length L) parallel to the x-axis.  We 
want to know how long Andrew thinks it is.  To measure it, he will 
measure where the ends of the rod are at a particular moment, and will 
then measure the distance between these points.  Clearly the two 
positions need to be measured simultaneously in his frame of reference, 
and thus t is the same for both measurements.  We know from that Betty 
thinks it has length L, and therefore x’=L.  Using the first of the Lorentz 
equations (the one which links x’, x and t), and remembering that t is the 
same for both measurements,  

  




L

L

xx
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
. 

Similarly we may show how a clock appears to slow down.  Betty is 
carrying the clock, so it is stationary with respect to her, and x’ (her 
measurement of the clock’s position) will therefore be constant.  The 
time interval shown on Betty’s clock is t’, while Andrew’s own clock will 
measure time t.  Here t’ is the time Andrew sees elapsing on Betty’s 
clock, and as such is equal to Tapparent.  Using the fourth Lorentz equation 
(the one with x’, t and t’ in it), and remembering that x’ remains constant, 
we have 
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T
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tt
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
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2.4.3 Four Vectors 
The Lorentz transforms show you how to work out the relationships 
between the (t,x,y,z) co-ordinates measured in different frames of 
reference.  We describe anything that transforms in the same way as a 
four vector, although strictly speaking we use (ct,x,y,z) so that all the 
components of the vector have the same units.  Three other examples of 
four vectors are: 

 (c, ux, uy, uz) is called the four velocity of an object, and is the 
derivative of (ct, x,y,z) with respect to the proper time .  Proper 
time is the time elapsed as measured in the rest frame of the object 
t=. 

 (mc,px,py,pz)  the momentum four vector.  Here m is equal to m0.  
This must be a four vector since it is equal to the rest mass 

 Page 34 



  Corrections March 2007 

multiplied by the four velocity (which we already know to be a four 
vector). 

 (/c,kx,ky,kz)  the wave four vector, where  is the angular 
frequency of the wave (=2f), and k is a vector which points in the 
direction the wave is going, and has magnitude 2/.  This can be 
derived from the momentum four vector in the case of a photon, 
since the momentum and total energy of a photon are related by 
E=pc, and the quantum theory states that E=hf=h/2 and 
p=h/=hk/2. 

It also turns out that the dot product of any two four-vectors is ‘frame-
invariant’ – in other words all observers will agree on its value.  The dot 
product of two four-vectors is slightly different to the conventional dot 
product, as shown below: 

       2222,,,,,, ctzyxzyxctzyxct  . 

Notice that we subtract the product of the first elements.   

The dot product of the position four vector with the wave four vector 
gives 

      tkkkczyxct zyx   rk,,,,,, . 

Now this is the phase of the wave, and since all observers must agree 
whether a particular point is a peak, a trough or somewhere in between, 
then the phase must be an invariant quantity.  Accordingly, since 
(ct,x,y,z) makes this invariant when ‘dotted’ with (/c,kx,ky,kz), it follows 
that (/c,kx,ky,kz) must be a four vector too. 

2.5 Questions 
1. Work out the relativistic  factor for speeds of 1%, 50%, 90% and 99% of 

the speed of light. 

2. Work out the speeds needed to give  factors of 1.0, 1.1, 2.0, 10.0. 

3. A muon travels at 90% of the speed of light down a pipe in a particle 
accelerator at a steady speed.  How far would you expect it to travel in 2s 
(a) without taking relativity into account, and (b) taking relativity into 
account?  

4. A particle with rest mass m and momentum p collides with a stationary 
particle of mass M.  The result is a single new particle of rest mass R.  
Calculate R in terms of p and M. 
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5. The principal runway at the spaceport on Arcturus-3 has white squares of 
side length 10m painted on it.  A set of light sensors on the base of a 
spacecraft can take a ‘picture’ of the whole runway at the same time.  
What will the squares look like in the image if the spacecraft is passing the 
runway at a very high speed?  Each sensor takes a picture of the runway 
directly underneath it, so you do not need to take into account the different 
times taken by light to reach the sensors from different parts of the 
runway. 

6. When an electron is accelerated through a voltage V, its kinetic energy is 
given by eV where e is the size of the charge on the electron and is equal 
to 1.61019C.  Taking the mass of the electron to be 9.11031kg, work out 
(a) the kinetic energy and speed of the electron when V=511kV (b) the 
kinetic energy and speed when V=20kV (c) the percentage error in the 
kinetic energy for V=20kV when calculated using the non-relativistic 
equation ½ mu2. 

7. Prove that the kinetic energy of a particle of rest mass m and speed u is 
given by ½ mu2 if the speed is small enough in comparison to the speed of 
light.  Work out the speed at which the non-relativistic calculation would be 
in error by 1%. 

8. Suppose a spacecraft accelerates with constant acceleration a (as 
measured by the spacecraft’s onboard accelerometers).  At t=0 it is at rest 
with respect to a planet.  Work out its speed relative to the planet as a 
function of time (a) as measured by clocks on the spacecraft, and (b) as 
measured by clocks on the planet.  Note that the instantaneous speed of 
the craft relative to the planet will be agreed upon by spacecraft and 
planet. 

 

 

 

 

 


