
 

Astronomy & Astrophysics Challenge 

September - December 2020 

Solutions and marking guidelines 

• The total mark for each question is in bold on the right-hand side of the table. The breakdown of the 

mark is below it.  

• There is an explanation for each correct answer for the multiple-choice questions. However, the 

students are only required to write the letter corresponding to the right answer.  

• In Section C, students should attempt either Qu 13 or Qu 14. If both are attempted, consider the 

question with the higher mark. 

• Answers to two or three significant figures are generally acceptable. The solution may give more than 

that, especially for intermediate stages, to make the calculation clear. 

• There are multiple ways to solve some of the questions; please accept all good solutions that arrive at 

the correct answer. Students getting the answer in a box  will get all the marks available for that 

calculation / part of the question (students may not explicitly calculate the intermediate stages, and 

should not be penalised for this so long as their argument is clear) 

Question Answer Mark 

Section A  10 

1. D 
Halley’s comet was last in the inner solar system in 1986 and famously has 
an orbital period of 75.3 years so will next be visible to the naked eye in 
2061. 

1 

2. D 
Since Betelgeuse is a supergiant star, it pulsates and so varies in brightness 
anyway – this change in brightness was far more than usual, although few 
scientists really thought it might be about to go supernova. It is likely the 
change in brightness was due to a large ejection of superheated material 
from its surface that cooled into a dust cloud that blocked the light from 
about a quarter of it. 

1 

3. B 
Beyond the core of a spiral galaxy, the rotational velocity is largely 
constant, giving a flat rotation curve – this can only be possible if there is 
considerable mass away from the centre of the galaxy, which is in 
contradiction with where the mass of stars appears to be concentrated, 
hence dark matter. 
 

1 



4. A 
Recognising you are given the angular diameter, then (working in degrees) 

𝑟 = 787 tan (
115

3600
) = 0.44 pc 

 
(Students may use the small angle approximation, so long as they 
remember to convert from degrees to radians.) 

1 

5. A 
Ophiuchus is on the ecliptic (and could be thought of as a bonus zodiacal 
constellation) whilst Aquila and Andromeda are both 15° - 30° above it. 

1 

6. B 
A star with a declination equal to the latitude of the observing location 
would culminate at the zenith (directly overhead), so Capella culminates 
highest as its declination is closest to 52°. 

1 

7. A 
We need to consider the situation when Venus is the greatest angular 
distance from the Sun to find out how far it can be from the Sun’s 
constellation 

Angle 𝑆�̂�𝑉 is maximum when 

𝑆�̂�𝐸 = 90° so given 𝑆𝑉 =
0.723 au and 𝑆𝐸 = 1 au 

∴ 𝑆�̂�𝑉 = sin−1 (
0.723

1
)

= 46.3° 
 
There are twelve zodiacal 
constellations, occupying 

about 30° each, so Venus can be no further than two constellations away 
from the Sun (i.e. < 60°). The twelve are (centred around Pisces): 

Libra – Scorpio – Sagittarius – Capricorn – Aquarius – Pisces – Aries – 
Taurus – Gemini – Cancer – Leo – Virgo 

Consequently, the only option within +/- 2 constellations of Pisces is Aries. 
(So in this situation it could be anywhere between Capricorn and Taurus.) 

1 

8. B 
A dimming of 0.0557 magnitudes means the new brightness is 

𝑏new = 10−0.4(0.0557)𝑏original = 0.950𝑏original 

The size of the dip is proportional to the cross-sectional area of the star 
blocked out by the planet, 

∴ 1 − 0.950 =
𝜋𝑅𝑃

2

𝜋𝑅𝑆
2    ∴

𝑅𝑃

𝑅𝑆
= √0.050 = 0.224 

1 

9. C 
Using the given formula: 

𝜌 =
𝑀

𝑉
=

𝑀

4
3

𝜋𝑟𝑆
3

=
𝑀

4
3

𝜋 (
2𝐺𝑀

𝑐2 )
3 =

3𝑐6

32𝜋𝐺3𝑀2
 

 

1 



Putting in the numbers: 

𝜌 =
3 × (3.00 × 108)6

32𝜋 × (6.67 × 10−11)3 × (4.15 × 106 × 1.99 × 1030)2
 

                = 1.07 × 106 kg m−3 
10. B 

 
Semi-major axis, 𝑎 =

1

2
(49400 + 1000 + 2 × 3390) = 28590 km 

Using the formula given on page 2: 

𝑇 = √
4𝜋2

𝐺𝑀
𝑎3 = √

4𝜋2

6.67 × 10−11 × 6.39 × 1023
× (28590 × 103)3

= 1.47 × 105 s = 40.9 hours 

1 

Section B  10 

11. a) 
 
The intensity of the light from the star on the planet is: 
 

𝑏 =
𝐿

4𝜋𝑑2
=

0.0233 × 3.85 × 1026

4𝜋 × (0.163 × 1.50 × 1011)2
= 1.19 × 103 W m−2 

 
Multiplying by the cross-sectional area gives the total power incident: 
 

𝐿incident = 𝑏 × 𝜋𝑅𝑃
2 = 1.19 × 103 × 𝜋 × (1.19 × 6.37 × 106)2 

 

                           = 2.16 × 1017 W  
 

2 
 
 
 

1 
 
 
 
 
 
 

1 

 b) 
 
For thermal equilibrium, 𝐿incident = 𝐿emitted 
 

∴ 𝐿incident = 4𝜋𝑅𝑃
2𝜎𝑇𝑃

4    ∴ 𝑇𝑃 = √
𝐿incident

4𝜋𝑅𝑃
2𝜎

4

 

 

∴ 𝑇𝑃 = √
2.16 × 1017

4𝜋 × (1.19 × 6.37 × 106)2 × 5.67 × 10−8

4

 

 

= 269.4 K = −3.6 °C  
 
Lose 0.5 marks if they leave the answer in kelvin 
[Allow full ecf in this section for their answer to part a)] 

2 
 

1 
 

 
 
 
 
 
 
 
 

1 



 c) 
 
The exoplanet may well have an atmosphere keeping its surface 
temperature higher than predicted by our model 
OR higher atmospheric pressure, so water is still liquid at that 
temperature 
 
[Accept any valid idea as to why water could be liquid on its surface – 
refuse answers that would imply it is even colder e.g. does not absorb all 
incoming light] 
 

1 
 
 
 
 

1 

12. a) 
 
Recognising that they need to covert from Wh into J, 
 

𝑡 =
10 × 3600

390
= 92 s  

 
This is very close to the planned maximum flight time of 90 s. About 20% 
of the flight will be in high power mode of around 510 W, during take-off 
and steering manoeuvres, whilst 80% will be travelling at a constant 
height in a straight line, with a power output of around 360 W. 
 

1 
 
 

 
 

1 

 b) 
 
For objects in the Solar System, Kepler’s 3rd Law is 𝑇2 = 𝑎3 if 𝑇 is in years 
and 𝑎 is in au, so 
 

𝑎 = √(
687

365
)

23

= 1.52 au 

 
[Doing it this way gives 1.524 au, whilst using the full version of Kepler’s 
3rd Law in SI units gives 1.520 au – allow slight differences in the following 
numbers accordingly] 
 
Calculating the incident intensity at the surface of Mars: 
 

𝑏 =
𝐿⊙

4𝜋𝑎2
=

3.85 × 1026

4𝜋 × (1.524 × 1.50 × 1011)2
= 586 W m−2 

 
Calculating the received power on the solar panel: 
 

𝑃received = 𝑏 × area × efficiency = 586 ×
544

104
× 0.3 = 9.56 W 

 
Hence the charging time: 
 

𝑡charge =
10 Wh

𝑃received
=

10 × 3600

9.56
= 3765 s = 62.7 mins  

 
[Must be in mins for the final mark] 

4 
 
 

 
 
 

1 
 
 
 
 
 
 
 
 
 

1 
 
 
 
 

1 
 
 
 
 

1 



Section C  10 

13. a) 
 
Recognising that they need to convert 𝐻0 into SI units: 
 

𝐻0 = 67.36 km s−1 Mpc−1 = 67.36 ×
1000

106 × 3.09 × 1016

= 2.180 × 10−18 s−1 
 
We can then put this into the given equation: 
 

𝜌0 =
3𝐻0

2 

8𝜋𝐺
=

3 × (2.180 × 10−18)2

8𝜋 × 6.67 × 10−11
= 8.50 × 10−27 kg m−3  

 
This corresponds to only about 5 hydrogen atoms per cubic metre! 
 

1 
 
 
 
 
 

0.5 
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 b) 
 
Since Ω ∝ 𝜌, we can look at the scaling relations for 𝜌 and hence work out 
the scale factor first. At time 𝑡𝐷𝐸: 
 

𝜌Λ = 𝜌𝑚 ∴ ΩΛ = Ω𝑚   
 

∴ ΩΛ,0 = Ω𝑚,0𝑎𝐷𝐸
−3    

 

∴ 𝑎𝐷𝐸 = √
Ω𝑚,0

ΩΛ,0

3

= √
0.3153

0.6847

3

= 0.7722 

 
Given we know how scale factor varies with time in a dark-energy-
dominated epoch, as well as the current age of the Universe, we can now 
use 𝑎𝐷𝐸  to work out the time when this epoch started 
 
Converting 𝑡0 into seconds, 
 

𝑡0 = 13.80 × 109 × 365 × 24 × 60 × 60 = 4.352 × 1017 s 
 

𝑎𝐷𝐸

𝑎0
=

𝑒𝐻0𝑡𝐷𝐸

𝑒𝐻0𝑡0
 

 

𝑡𝐷𝐸 =
ln(𝑎𝐷𝐸𝑒𝐻0𝑡0)

𝐻0
=

ln(0.772 × 𝑒2.18×10−18×4.35×1017
)

2.18 × 10−18
= 3.17 × 1017 s 

= 10.0 Gyr  

 
[Must be in Gyr for the final mark] 
 
This corresponds to a redshift of 0.295, and shows the transition 
happened about 1 Gyr after the Solar System was formed. We have used 
that the Hubble parameter is constant, as would be expected if ΩΛ ≈ 1, 
although this would not be true throughout the period (especially as we 
approach 𝑡𝐷𝐸), but this simple model gets close to the accepted value. 

4 
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 c) 
 
First, we can turn the given redshift into a scale factor: 
 

𝑎𝑒𝑞 = (1 + 𝑧𝑒𝑞)
−1

= (1 + 3402)−1 = 2.939 × 10−4 

 
Given the time and scale factor at the end of the matter-dominated epoch 
(𝑡𝐷𝐸  and 𝑎𝐷𝐸), the scale factor at the beginning of the epoch (𝑎𝑒𝑞), and 

the scaling relation for how the scale factor varies with time during the 

epoch (𝑎 ∝ 𝑡2/3), we can work out 𝑡𝑒𝑞: 

 

𝑎𝑒𝑞

𝑎𝐷𝐸
=

𝑡𝑒𝑞
2/3

𝑡𝐷𝐸
2/3

 

 

∴ 𝑡𝑒𝑞 = (
𝑎𝑒𝑞

𝑎𝐷𝐸
𝑡𝐷𝐸

2/3
)

3/2

= (
2.939 × 10−4

0.7722
× (3.17 × 1017)2/3)

3/2

 

 

= 2.35 × 1012 s = 74.5 × 103 years 
 
[Accept any units for 𝑡𝑒𝑞  for this mark] 

 
First, we can work out the density of dark energy today: 
 

𝜌Λ,0 = ΩΛ,0𝜌0 = 0.6847 × 8.50 × 10−27 = 5.82 × 10−27 kg m−3 

 
By definition, at 𝑡𝐷𝐸  then 𝜌𝑚,𝐷𝐸 = 𝜌Λ,𝐷𝐸 = 𝜌Λ,0 = 5.82 × 10−27 kg m−3 

 
Given that for the matter-dominated epoch 𝜌𝑚 ∝ 𝑎−3, 
 

𝜌𝑚,𝑒𝑞

𝜌𝑚,𝐷𝐸
= (

𝑎𝑒𝑞

𝑎𝐷𝐸
)

−3

 

 

∴ 𝜌𝑚,𝑒𝑞 = (
2.939 × 10−4

0.7722
)

−3

× 5.82 × 10−27 = 1.06 × 10−16 kg m−3 

 
By definition, at 𝑡𝑒𝑞 then matter only represents half the density of the 

Universe and so 
 

𝜌𝑒𝑞 = 2𝜌𝑚,𝑒𝑞 = 2.11 × 10−16 kg m−3  

 

(Students may also combine 𝜌𝑚 ∝ 𝑎−3 with 𝑎 ∝ 𝑡2/3 to get 𝜌𝑚 ∝ 𝑡−2 and 
hence set up a similar form of calculation to the penultimate mark. Allow 
full marks for this approach) 
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14. a) 
 
Given the eccentricity and the perihelion distance, we can use the formula 
from page 2 to work out the semi-major axis: 
 

𝑟𝑝𝑒𝑟𝑖 = 𝑎(1 − 𝑒) ∴ 𝑎 =
𝑟𝑝𝑒𝑟𝑖

1 − 𝑒
=

0.294649

1 − 0.999188
= 362.9 au 

 
From this we can work out the period of the orbit using Kepler’s 3rd Law. 
For objects in the Solar System, if 𝑇 is in years and 𝑎 is in au, then 
 

𝑇2 = 𝑎3 ∴ 𝑇 = √𝑎3 = √362.93 = 6912.31 years 
 
(Using the full version in SI units gives 𝑇 = 6944.55 years) 
 
The perihelion on 3rd July corresponds to approximately halfway through 
the year 2020, so the starting date is 𝑇0 ≈ 2020.5 and thus the year of the 
next perihelion is 
 

𝑇next = 𝑇0 + 𝑇 = 2020.5 + 6912.31 = 8932.81 = 8932  
 

(Using the other value of 𝑇 gives 𝑇next = 8965.05 = 8965 ) 
 
[Lose 0.5 marks if they do not take into account how far we are through 
2020 already and hence get 8964] 
 
In practice the orbital characteristics will get better known through 
observations, and since the eccentricity is so high that can shift the date of 
the next perihelion by several decades. 
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 b) 
 
Calculating the aphelion distance using the formula from page 2: 
 

𝑟𝑎𝑝ℎ = 𝑎(1 + 𝑒) = 362.9 × (1 + 0.999188) = 725.4 au 

 
Calculating the phase angle on the discovery date using the cosine rule: 

 
𝑆𝐸2 = 𝑆𝐶2 + 𝐸𝐶2 − 2 × 𝑆𝐶 × 𝐸𝐶 cos 𝜃 

 

∴ 𝜃 = cos−1 (
𝑆𝐸2 − 𝑆𝐶2 − 𝐸𝐶2

−2 × 𝑆𝐶 × 𝐸𝐶
) 

 

∴ 𝜃 = cos−1 (
12 − 2.0892 − 1.7022

−2 × 2.089 × 1.702
) = 28.3° 

 
Evaluating 𝑝(𝜃) at both aphelion and in the discovery location: 
 

𝑝(𝜃)𝑎𝑝ℎ = 𝑝(0°) = 𝐵 

𝑝(𝜃)𝑑𝑖𝑠𝑐 = 𝑝(28.3°) = 0.893𝐵 
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Assuming a cross-sectional area for the comet of 𝐴, we can calculate the 
total power incident for a given distance from the Sun, 𝑑𝑆: 
 

𝑃𝑖𝑛𝑐 = 𝑏𝑖𝑛𝑐 × 𝐴 =
𝐿⊙

4𝜋𝑑𝑆
2 × 𝐴 

 
We can now use this to work out the brightness (i.e. intensity) of the light 
reflected from the comet as observed a given distance from the Earth, 𝑑𝐸: 
 

𝑏𝑟𝑒𝑓 =
𝑃𝑟𝑒𝑓

4𝜋𝑑𝐸
2 =

𝐿⊙

4𝜋𝑑𝑆
2 × 𝐴 × 𝑝(𝜃)

4𝜋𝑑𝐸
2 =

𝐿⊙𝐴𝑝(𝜃)

16𝜋𝑑𝑆
2𝑑𝐸

2  

 
Considering the ratio of the reflected brightness for the two locations: 
 

𝑏𝑎𝑝ℎ

𝑏𝑑𝑖𝑠𝑐
=

𝑝(𝜃)𝑎𝑝ℎ𝑑𝑆,𝑑𝑖𝑠𝑐
2 𝑑𝐸,𝑑𝑖𝑠𝑐

2

𝑝(𝜃)𝑑𝑖𝑠𝑐𝑑𝑆,𝑎𝑝ℎ
2 𝑑𝐸,𝑎𝑝ℎ

2  

 

=
𝐵 × 2.0892 × 1.7022

0.893𝐵 × 725.42 × 724.42
= 5.13 × 10−11 

 
[Allow 𝑑𝐸,𝑎𝑝ℎ = 726.4 au too giving 5.10 × 10−11, but penalise by 0.5 

marks any other value] 
 
We can now use this flux ratio to work out the magnitude at aphelion: 
 

𝑚𝑎𝑝ℎ = 𝑚𝑑𝑖𝑠𝑐 − 2.5 log (
𝑏𝑎𝑝ℎ

𝑏𝑑𝑖𝑠𝑐
) = 18.0 − 2.5 log(5.13 × 10−11) = 43.7  

 
This is much fainter than the Hubble Space Telescope’s limiting magnitude 
so would not be visible 
 

 
 
 

0.5 
 
 
 
 
 
 
 

0.5 
 
 
 
 
 
 
 

1 
 
 
 
 
 
 
 

1 
 
 
 

1 

 


