Astronomy \& Astrophysics Challenge

September - December 2020

Solutions and marking guidelines

- The total mark for each question is in bold on the right-hand side of the table. The breakdown of the mark is below it.
- There is an explanation for each correct answer for the multiple-choice questions. However, the students are only required to write the letter corresponding to the right answer.
- In Section C, students should attempt either Qu 13 or Qu 14. If both are attempted, consider the question with the higher mark.
- Answers to two or three significant figures are generally acceptable. The solution may give more than that, especially for intermediate stages, to make the calculation clear.
- There are multiple ways to solve some of the questions; please accept all good solutions that arrive at the correct answer. Students getting the answer in a box will get all the marks available for that calculation / part of the question (students may not explicitly calculate the intermediate stages, and should not be penalised for this so long as their argument is clear)

Question	Answer	Mark
Section A	1. D Halley's comet was last in the inner solar system in 1986 and famously has an orbital period of 75.3 years so will next be visible to the naked eye in 2061. 2. D Since Betelgeuse is a supergiant star, it pulsates and so varies in brightness anyway - this change in brightness was far more than usual, although few scientists really thought it might be about to go supernova. It is likely the change in brightness was due to a large ejection of superheated material from its surface that cooled into a dust cloud that blocked the light from about a quarter of it. 3. B Beyond the core of a spiral galaxy, the rotational velocity is largely constant, giving a flat rotation curve - this can only be possible if there is considerable mass away from the centre of the galaxy, which is in contradiction with where the mass of stars appears to be concentrated, hence dark matter.$\quad 1$	

4.	A Recognising you are given the angular diameter, then (working in degrees) $r=787 \tan \left(\frac{115}{3600}\right)=0.44 \mathrm{pc}$ (Students may use the small angle approximation, so long as they remember to convert from degrees to radians.)	1
5.	A Ophiuchus is on the ecliptic (and could be thought of as a bonus zodiacal constellation) whilst Aquila and Andromeda are both $15^{\circ}-30^{\circ}$ above it.	1
6.	B A star with a declination equal to the latitude of the observing location would culminate at the zenith (directly overhead), so Capella culminates highest as its declination is closest to 52°.	1
7.	A We need to consider the situation when Venus is the greatest angular distance from the Sun to find out how far it can be from the Sun's constellation Angle $S \widehat{E} V$ is maximum when $S \widehat{V} E=90^{\circ}$ so given $S V=$ 0.723 au and $S E=1$ au $\begin{array}{r} \therefore S \hat{E} V=\sin ^{-1}\left(\frac{0.723}{1}\right) \\ =46.3^{\circ} \end{array}$ There are twelve zodiacal constellations, occupying about 30° each, so Venus can be no further than two constellations away from the Sun (i.e. $<60^{\circ}$). The twelve are (centred around Pisces): Libra - Scorpio - Sagittarius - Capricorn - Aquarius - Pisces - Aries Taurus - Gemini - Cancer - Leo - Virgo Consequently, the only option within $+/-2$ constellations of Pisces is Aries. (So in this situation it could be anywhere between Capricorn and Taurus.)	1
8.	B A dimming of 0.0557 magnitudes means the new brightness is $b_{\text {new }}=10^{-0.4(0.0557)} b_{\text {original }}=0.950 b_{\text {original }}$ The size of the dip is proportional to the cross-sectional area of the star blocked out by the planet, $\therefore 1-0.950=\frac{\pi R_{P}^{2}}{\pi R_{S}^{2}} \quad \therefore \frac{R_{P}}{R_{S}}=\sqrt{0.050}=0.224$	1
9.	C Using the given formula: $\rho=\frac{M}{V}=\frac{M}{\frac{4}{3} \pi r_{S}^{3}}=\frac{M}{\frac{4}{3} \pi\left(\frac{2 G M}{c^{2}}\right)^{3}}=\frac{3 c^{6}}{32 \pi G^{3} M^{2}}$	1

\begin{tabular}{|c|c|c|}
\hline \& Putting in the numbers:
\[
\begin{aligned}
\rho \& =\frac{3 \times\left(3.00 \times 10^{8}\right)^{6}}{32 \pi \times\left(6.67 \times 10^{-11}\right)^{3} \times\left(4.15 \times 10^{6} \times 1.99 \times 10^{30}\right)^{2}} \\
\& =1.07 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
\] \& \\
\hline 10. \& \begin{tabular}{l}
B \\
Semi-major axis, \(a=\frac{1}{2}(49400+1000+2 \times 3390)=28590 \mathrm{~km}\) Using the formula given on page 2:
\[
\begin{aligned}
T=\sqrt{\frac{4 \pi^{2}}{G M} a^{3}} \& =\sqrt{\frac{4 \pi^{2}}{6.67 \times 10^{-11} \times 6.39 \times 10^{23}} \times\left(28590 \times 10^{3}\right)^{3}} \\
\& =1.47 \times 10^{5} \mathrm{~s}=40.9 \text { hours }
\end{aligned}
\]
\end{tabular} \& 1 \\
\hline Section B \& \& 10 \\
\hline 11. \& \begin{tabular}{l}
a) \\
The intensity of the light from the star on the planet is:
\[
b=\frac{L}{4 \pi d^{2}}=\frac{0.0233 \times 3.85 \times 10^{26}}{4 \pi \times\left(0.163 \times 1.50 \times 10^{11}\right)^{2}}=1.19 \times 10^{3} \mathrm{~W} \mathrm{~m}^{-2}
\] \\
Multiplying by the cross-sectional area gives the total power incident:
\[
\begin{aligned}
L_{\text {incident }} \& =b \times \pi R_{P}^{2}=1.19 \times 10^{3} \times \pi \times\left(1.19 \times 6.37 \times 10^{6}\right)^{2} \\
\& =2.16 \times 10^{17} \mathrm{~W}
\end{aligned}
\]
\end{tabular} \& 2
1
1
1 \\
\hline \& \begin{tabular}{l}
b) \\
For thermal equilibrium, \(L_{\text {incident }}=L_{\text {emitted }}\)
\[
\begin{gathered}
\therefore L_{\text {incident }}=4 \pi R_{P}^{2} \sigma T_{P}^{4} \quad \therefore T_{P}=\sqrt[4]{\frac{L_{\text {incident }}}{4 \pi R_{P}^{2} \sigma}} \\
\therefore T_{P}=\sqrt[4]{\frac{2.16 \times 10^{17}}{4 \pi \times\left(1.19 \times 6.37 \times 10^{6}\right)^{2} \times 5.67 \times 10^{-8}}} \\
=269.4 \mathrm{~K}=-3.6^{\circ} \mathrm{C}
\end{gathered}
\] \\
Lose 0.5 marks if they leave the answer in kelvin [Allow full ecf in this section for their answer to part a)]
\end{tabular} \& 2
1

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
c) \\
The exoplanet may well have an atmosphere keeping its surface temperature higher than predicted by our model \\
OR higher atmospheric pressure, so water is still liquid at that temperature \\
[Accept any valid idea as to why water could be liquid on its surface refuse answers that would imply it is even colder e.g. does not absorb all incoming light]
\end{tabular} \& 1

1

\hline 12. \& | a) |
| :--- |
| Recognising that they need to covert from Wh into J, $t=\frac{10 \times 3600}{390}=92 \mathrm{~s}$ |
| This is very close to the planned maximum flight time of 90 s. About 20% of the flight will be in high power mode of around 510 W , during take-off and steering manoeuvres, whilst 80% will be travelling at a constant height in a straight line, with a power output of around 360 W . | \& 1

1

\hline \& | b) |
| :--- |
| For objects in the Solar System, Kepler's $3^{\text {rd }}$ Law is $T^{2}=a^{3}$ if T is in years and a is in au, so $a=\sqrt[3]{\left(\frac{687}{365}\right)^{2}}=1.52 \mathrm{au}$ |
| [Doing it this way gives 1.524 au, whilst using the full version of Kepler's $3^{\text {rd }}$ Law in SI units gives 1.520 au - allow slight differences in the following numbers accordingly] |
| Calculating the incident intensity at the surface of Mars: $b=\frac{L_{\odot}}{4 \pi a^{2}}=\frac{3.85 \times 10^{26}}{4 \pi \times\left(1.524 \times 1.50 \times 10^{11}\right)^{2}}=586 \mathrm{~W} \mathrm{~m}^{-2}$ |
| Calculating the received power on the solar panel: $P_{\text {received }}=b \times \text { area } \times \text { efficiency }=586 \times \frac{544}{10^{4}} \times 0.3=9.56 \mathrm{~W}$ |
| Hence the charging time: $t_{\text {charge }}=\frac{10 \mathrm{~Wh}}{P_{\text {received }}}=\frac{10 \times 3600}{9.56}=3765 \mathrm{~s}=62.7 \mathrm{mins}$ |
| [Must be in mins for the final mark] | \& 4

1

1
1
1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Section C \& \& 10 \\
\hline 13. \& \begin{tabular}{l}
a) \\
Recognising that they need to convert \(H_{0}\) into SI units:
\[
\begin{array}{r}
H_{0}=67.36 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}=67.36 \times \frac{1000}{10^{6} \times 3.09 \times 10^{16}} \\
=2.180 \times 10^{-18} \mathrm{~s}^{-1}
\end{array}
\] \\
We can then put this into the given equation:
\[
\rho_{0}=\frac{3 H_{0}^{2}}{8 \pi G}=\frac{3 \times\left(2.180 \times 10^{-18}\right)^{2}}{8 \pi \times 6.67 \times 10^{-11}}=8.50 \times 10^{-27} \mathrm{~kg} \mathrm{~m}^{-3}
\] \\
This corresponds to only about 5 hydrogen atoms per cubic metre!
\end{tabular} \& 0.5

0.5

\hline \& | b) |
| :--- |
| Since $\Omega \propto \rho$, we can look at the scaling relations for ρ and hence work out the scale factor first. At time $t_{D E}$: $\begin{gathered} \rho_{\Lambda}=\rho_{m} \therefore \Omega_{\Lambda}=\Omega_{m} \\ \therefore \Omega_{\Lambda, 0}=\Omega_{m, 0} a_{D E}^{-3} \\ \therefore a_{D E}=\sqrt[3]{\frac{\Omega_{m, 0}}{\Omega_{\Lambda, 0}}}=\sqrt[3]{\frac{0.3153}{0.6847}}=0.7722 \end{gathered}$ |
| Given we know how scale factor varies with time in a dark-energydominated epoch, as well as the current age of the Universe, we can now use $a_{D E}$ to work out the time when this epoch started |
| Converting t_{0} into seconds, $\begin{gathered} t_{0}=13.80 \times 10^{9} \times 365 \times 24 \times 60 \times 60=4.352 \times 10^{17} \mathrm{~s} \\ \frac{a_{D E}}{a_{0}}=\frac{e^{H_{0} t_{D E}}}{e^{H_{0} t_{0}}} \\ t_{D E}=\frac{\ln \left(a_{D E} e^{H_{0} t_{0}}\right)}{H_{0}}=\frac{\ln \left(0.772 \times e^{2.18 \times 10^{-18} \times 4.35 \times 10^{17}}\right)}{2.18 \times 10^{-18}}=3.17 \times 10^{17} \mathrm{~s} \\ =10.0 \mathrm{Gyr} \end{gathered}$ |
| [Must be in Gyr for the final mark] |
| This corresponds to a redshift of 0.295 , and shows the transition happened about 1 Gyr after the Solar System was formed. We have used that the Hubble parameter is constant, as would be expected if $\Omega_{\Lambda} \approx 1$, although this would not be true throughout the period (especially as we approach $t_{D E}$), but this simple model gets close to the accepted value. | \& | 4 |
| :---: |
| 0 |
| 0.5 |
| 0.5 |
| |
| 1 |
| |
| |
| |

\hline
\end{tabular}

