
 

Astronomy & Astrophysics Challenge 

September - December 2019 

Solutions and marking guidelines 

• The total mark for each question is in bold on the right-hand side of the table. The breakdown of the 

mark is below it.  

• There is an explanation for each correct answer for the multiple-choice questions. However, the 

students are only required to write the letter corresponding to the right answer.  

• In Section C, students should attempt either Qu 13 or Qu 14. If both are attempted, consider the 

question with the higher mark. 

• Answers to two or three significant figures are generally acceptable. The solution may give more to 

make the calculation clear. 

• There are multiple ways to solve some of the questions; please accept all good solutions that arrive at 

the correct answer. 

Question Answer Mark 

Section A  10 

1. C 
It’s an image of the supermassive black hole at the centre of the galaxy 
M87 and was significant as it is the first time a black hole has been directly 
imaged. It was done using radio wavelengths and with a telescope with an 
effective diameter equal to the diameter of the Earth! 

1 

2. B 
In July 1969 was the Apollo 11 mission, which famously landed in the 
Mare Tranquillitatis (‘Sea of Tranquillity’). 

1 

3. A 
X-rays are absorbed by the Earth’s atmosphere, so an X-ray telescope 
must be in space (or at least above much of the atmosphere). 

1 

4. A 
This question is easiest solved by recognising which constellations each of 
the four stars belong to. Aldebaran is in Taurus, which is the ‘bull’ being 
hunted by Orion (the ‘hunter’), which contains Rigel. Helping Orion are his 
two ‘dogs’, with Procyon in Canis Minor and Sirius in Canis Major. As 
viewed from the UK, Orion is facing the bull and being followed by his 
dogs, so Aldebaran is the first to rise. A more precise calculation can be 
done by calculating the length of time that the star is above the horizon 
with the hour angle, but this is deemed too complicated for this paper. 

1 



5. A 
By taking the photo during a solar eclipse they could see the stars of the 
Hyades which were behind the Sun at the time. They found that they had 
been shifted by the gravitational lensing of the Sun, and that the size of 
the shift was consistent with General Relativity (which predicted a shift 
twice as large as expected from Newtonian mechanics). 

1 

6. B 
A full moon in Capricorn tells us that the Sun must be on the opposite side 
of the sky, corresponding to Cancer or Leo. The UK season that 
corresponds to this is the summer. 

1 

7. C 
Using the given formula: 

𝑔 ∝
𝑀

𝑅2
 ∴   𝑀 ∝ 𝑔𝑅2    ∴

𝑀𝑇𝑖𝑡𝑎𝑛

𝑀𝑀𝑜𝑜𝑛
=

𝑔𝑇𝑅𝑇
2

𝑔𝑀𝑅𝑀
2 = 1.82 

 

1 

8. A 

 
Using Pythagoras’ Theorem: 

𝑅𝐸
2 + 8002 = (𝑅𝐸 + 𝑥)2   ∴ 𝑥2 + 2𝑅𝐸𝑥 − 8002 = 0 

Solving this quadratic gives 𝑥 ≈ 0.05 m = 5 cm (the other root is clearly 
not applicable to this situation and corresponds to an equivalent triangle 
out the other side of the planet). 

1 

9. D 
Using the formula given on page 2: 

𝑎 = √
𝐺𝑀𝐸𝑇2

4𝜋2

3

= √
6.67 × 10−11 × 5.97 × 1024 × (24 × 60 × 60)2

4𝜋2

3

= 4.22 × 107 m 
So the circumference = 2𝜋𝑎 = 2.65 × 108 m and hence the average 
separation is that divided by 450, which is 590 km. 
Note that this is technically the length of the arc between the two 
satellites, but since the angle between each is less than a degree it means 
that calculating the direct line of sight distance is only negligibly shorter. 

1 

10. D 
Since 𝑏 ∝ 1/𝑟2 we can say that at Ultima Thule the Sun is 43.42 times 
fainter in brightness than it is at the Earth. Using the formula given on 
page 2, this corresponds to a change in magnitude of: 

Δ𝑚 =
1

0.4
log 43.42 = 8.19 

Finally, we add it to apparent magnitude as viewed from the Earth (since it 
is less bright), so -26.74+8.19 = -18.55. This is much brighter than the full 
moon hence New Horizons will only risk taking a photo of the Earth once it 
has finished all of its science, as if the Sun is too close to the field of view it 
would be bright enough to permanently damage the camera. 

1 



Section B  10 

11. a) 
 
The solar day on Mercury is NOT the same as the sidereal (= relative to the 
stars) day, which would be easily calculated as 2/3 × 88 days = 59 days 
[Any student giving that answer for this part receives 0 marks as the 
question explicitly tells you that it’s longer than a Mercurian year]  
 

 
 
As shown by the diagram above, Mercury’s solar day is 176 Earth days (or 
two Mercurian years, or an equivalent statement) 
 
[One mark can be gained for an attempt at a suitable diagram. The correct 
answer gains both marks, whether or not there is a diagram] 
 
[Alternative example written answer for 2 marks: In 88 days Mercury 
orbits once, and in this time it has rotated 1½ times. Starting from facing 
the Sun at noon, it would have to rotate once just to keep facing the Sun 
in its orbit, so no day would have passed by. But we are told it rotates an 
extra half a rotation (so half a day has passed in its year), hence a whole 
day takes two Mercurian years.] 
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1 
 
 
 
 
 
 
 
 
 

1 

 b) 
 
For the Sun to appear stationary, the astronaut must walk at Mercury’s 
rotational speed (as defined by the length of a solar day) 
 

𝑣 =
2𝜋𝑅Mercury

𝑇
 

 

=
2𝜋 × 2440

2 × 88 × 24
 

 
= 3.63 km h−1 

 
This is roughly walking speed! 
 
[Allow full ecf in this section for their answer to part a)] 
 
 
 
 
 

3 
 
 
 
 

1 
 

 
1 
 
 

1 



12. a) 
 
Recognising that they need to determine the gradient of the graph AND 
use the solid line rather than the dashed one (see comment in caption) 
 

𝐻0 = 510 ± 10 km s−1 Mpc−1 
 

2 
 

1 
 

 
1 

 b) 
 
In SI units, the unit of H0 becomes: 
 

km s−1

Mpc
=

m s−1

m
= s−1 

 
Hence 𝑛 = −1 
 
Converting the value of H0 into SI: 
 

510 km s−1 Mpc−1 = 510 ×
1000

106 × 3.09 × 1016
= 1.65 × 10−17 s−1 

 
Putting this into the given formula: 
 

𝑡 = 𝐻0
−1 = (1.65 × 10−17)−1 = 6.06 × 1016 s = 1.92 Gyr 

 
[Must be in Gyr for the final mark. Allow full ecf from part a)] 
 
Since Hubble’s distances were quite a long way off the currently accepted 
values, his age of the Universe is much shorter than what we believe it is 
today, but it was still a challenge to the prevailing idea at the time that the 
Universe was eternal (the ‘Steady State Theory’) and was one of the first 
pieces of evidence that the Universe might instead have a finite age. 
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Section C  10 

13. a) 
 
First, we calculate the mass difference between four hydrogen nuclei and 
one helium nucleus: 

Δ𝑚 = 4𝑚H − 𝑚He = (4 × 1.674 × 10−27) − 6.649 × 10−27

= 4.7 × 10−29 kg  
 
We can then use Einstein’s most famous equation (E = mc2) to work out 
the energy released per reaction 

𝐸p−p = Δ𝑚𝑐2 = 4.7 × 10−29 × (3.00 × 108)2 = 4.23 × 10−12 J 

 

1 
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 b) 
 
First, we calculate the number of reactions per second, N: 

𝑁 =
𝐿⊙

𝐸p−p
=

3.85 × 1026

4.23 × 10−12
= 9.10 × 1037 

 
Since there are four hydrogen nuclei used per reaction, the total number 
of hydrogen nuclei fusing per second is 3.64 × 1038 
 
The percentage of hydrogen mass converted into energy is simply the 
change in mass in the p-p chain divided by the total mass of hydrogen 
used in the p-p chain: 

Δ𝑚

4𝑚H
=

4.7 × 10−29

4 × 1.674 × 10−27
= 0.702% 
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 c) 
 
First, we can work out the total mass of hydrogen available for fusion: 

𝑀H = 13% × 71% × 𝑀⊙ = 1.84 × 1029 kg 

 
By using our answer to part b) for the percentage mass change of the 
hydrogen, we can calculate how much mass will be converted into energy 
by the process: 

Δ𝑀H = 0.702% × 1.84 × 1029 = 1.29 × 1027 kg 
 
This can be converted into the total energy released by the Sun over its 
lifetime: 

𝐸tot = Δ𝑀H𝑐2 = 1.29 × 1027 × (3.00 × 108)2 = 1.16 × 1044 J 
 
Assuming a constant luminosity, we can then calculate the hydrogen 
burning lifetime of the Sun: 

𝑡⊙ =
𝐸tot

𝐿⊙
=

1.16 × 1044

3.85 × 1026
= 3.01 × 1017 s = 9.56 × 109 years 

 
[Must be in years for the final mark] 
 
 
 
 

3 
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 d) 
 
First, we can use Kepler’s Third Law (from page 2) to calculate the total 
mass of the binary star system: 

𝑀𝑡𝑜𝑡 =
4𝜋2

𝐺

𝑎3

𝑇2
=

4𝜋2

6.67 × 10−11

(9.1 × 1.50 × 1011)3

(3.83 × 60 × 60 × 24 × 365)2

= 1.03 × 1032 kg  
 
We then know the heavier star is 3/4 of the total mass, so must be: 

7.74 × 1031 kg (= 38.9 𝑀⊙) 

 

Since 𝐸tot ∝ 𝑀,  𝐿 ∝ 𝑀3.5 and 𝑡 =
𝐸tot

𝐿
 we can say that 𝑡 ∝ 𝑀−2.5 

 
By comparison with the Sun: 

𝑡 = 𝑡⊙ (
𝑀

𝑀⊙
)

−2.5

= 9.56 × 109 × (38.9)−2.5 = 1.01 × 106 years 

 
[Accept any suitable unit for the final mark] 
 
This means that stars that are much heavier than the Sun have 
considerably shorter main sequence lifetimes – they live fast and die 
young! Even though the structure and thermal transfers within such a 
large star will be rather different to the Sun, detailed modelling shows 
that this simple method gives a reasonable estimate at the correct order 
of magnitude. 
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14. a) 
 
The brightness (i.e. intensity) of the Sun as viewed from Earth is 
 

𝑏Earth =
𝐿

4𝜋𝑟2
=

3.85 × 1026

4𝜋 × (1.50 × 1011)2
= 1362 W m−2 

 
We are told the period of the planet and the stellar mass so we can use 
Kepler’s Third Law to work out its orbital radius and hence (with the stellar 
luminosity) its brightness: 
 

𝑎d = √
𝐺𝑀∗𝑇2

4𝜋2

3

= √
6.67 × 10−11 × (0.089 × 1.99 × 1030) × (4.050 × 24 × 3600)2

4𝜋2

3

= 3.32 × 109 m 
 

∴ 𝑏d =
𝐿∗

4𝜋𝑎d
2 =

5.22 × 10−4 × 3.85 × 1026

4𝜋 × (3.32 × 109)2
= 1450 W m−2 

 
[This is only about 6% larger than bEarth and so we have verified the 
brightnesses are comparable.] 
 
With the two brightness and the apparent magnitude of the Sun as viewed 
from Earth we can calculate the different in magnitude and hence the new 
magnitude: 
 

Δ𝑚 = 2.5 log
𝑏Earth

𝑏d
= 2.5 log

1362

1450
= −0.068 

𝑚new = 𝑚⊙ + Δ𝑚 = −26.74 + (−0.068) = −26.81 

 
So TRAPPIST-1 is just as bright as the Sun as viewed from planet d, 
although it has an angular width almost six times larger (just under 3 
degrees) so has a much more imposing presence in the sky. 
 
[Accept the modulus of Δ𝑚 for the fourth mark, and any consistent sign 
convention for the fifth mark – the student must recognise that since 
TRAPPIST-1 is brighter, that will correspond to a more negative apparent 
magnitude]  
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 b) 
 
We can use Kepler’s Third Law again to work out the orbital radius of 
planet f: 
 

𝑎f = √
𝐺𝑀∗𝑇2

4𝜋2

3

= √
6.67 × 10−11 × (0.089 × 1.99 × 1030) × (9.206 × 24 × 3600)2

4𝜋2

3

= 5.74 × 109 m 
 
We can work out the full angular width of the city, θ, by using its width 
and distance, and assuming we can use the small angle approximation: 

 

tan
𝜃

2
=

10 km

𝑎f − 𝑎d
   ∴  𝜃 ≈

20 km

𝑎f − 𝑎d

= 8.26 × 10−6 rad 
(= 4.73 × 10−4 deg = 1.70 arcsec) 

 
Using the given formula to find out the 
peak wavelength of the star’s spectrum: 
 

𝜆max =
2.90 × 10−3

𝑇
=

2.90 × 10−3

2511
= 1.15 × 10−6 m 

 
This is in the near infrared, and about twice 
as long a wavelength as the peak 
wavelength for the Sun 

 
Finally, we can use the given formula to work out the necessary diameter 
of the telescope by making θ = θmin and λ = λmax: 
 

𝐷 =
1.22𝜆𝑚𝑎𝑥

𝜃
=

1.22 × 1.15 × 10−6

8.26 × 10−6
= 0.171 m 

 
This is a (very) feasible size of telescope to make 
 
[Allow ecf for the final mark if they write something consistent with their 
value of D] 
 
(So, it is likely that if the planets do have cities and astronomers that know 
how to make telescopes, they are probably aware of each other. The 
largest telescopes on Earth are around 10 m in diameter, and a 0.7 m 
telescope would be capable of resolving the city throughout the whole 
orbit.) 
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