

Astronomy \& Astrophysics Challenge

September - December 2019

Solutions and marking guidelines

- The total mark for each question is in bold on the right-hand side of the table. The breakdown of the mark is below it.
- There is an explanation for each correct answer for the multiple-choice questions. However, the students are only required to write the letter corresponding to the right answer.
- In Section C, students should attempt either Qu 13 or Qu 14. If both are attempted, consider the question with the higher mark.
- Answers to two or three significant figures are generally acceptable. The solution may give more to make the calculation clear.
- There are multiple ways to solve some of the questions; please accept all good solutions that arrive at the correct answer.

Question	Answer	Mark
Section A		
1.	C It's an image of the supermassive black hole at the centre of the galaxy M87 and was significant as it is the first time a black hole has been directly imaged. It was done using radio wavelengths and with a telescope with an effective diameter equal to the diameter of the Earth!	1
2.	B In July 1969 was the Apollo 11 mission, which famously landed in the Mare Tranquillitatis ('Sea of Tranquillity').	1
3.	A X-rays are absorbed by the Earth's atmosphere, so an X-ray telescope must be in space (or at least above much of the atmosphere).	1
4.	A This question is easiest solved by recognising which constellations each of the four stars belong to. Aldebaran is in Taurus, which is the 'bull' being hunted by Orion (the 'hunter'), which contains Rigel. Helping Orion are his two 'dogs', with Procyon in Canis Minor and Sirius in Canis Major. As viewed from the UK, Orion is facing the bull and being followed by his dogs, so Aldebaran is the first to rise. A more precise calculation can be done by calculating the length of time that the star is above the horizon with the hour angle, but this is deemed too complicated for this paper.	1

5.	A By taking the photo during a solar eclipse they could see the stars of the Hyades which were behind the Sun at the time. They found that they had been shifted by the gravitational lensing of the Sun, and that the size of the shift was consistent with General Relativity (which predicted a shift twice as large as expected from Newtonian mechanics).	1
6.	B A full moon in Capricorn tells us that the Sun must be on the opposite side of the sky, corresponding to Cancer or Leo. The UK season that corresponds to this is the summer.	1
7.	C Using the given formula: $g \propto \frac{M}{R^{2}} \therefore \quad M \propto g R^{2} \quad \therefore \frac{M_{\text {Titan }}}{M_{\text {Moon }}}=\frac{g_{T} R_{T}^{2}}{g_{M} R_{M}^{2}}=1.82$	1
8.	A 800 m Using Pythagoras' Theorem: $R_{E}^{2}+800^{2}=\left(R_{E}+x\right)^{2} \quad \therefore x^{2}+2 R_{E} x-800^{2}=0$ Solving this quadratic gives $x \approx 0.05 \mathrm{~m}=5 \mathrm{~cm}$ (the other root is clearly not applicable to this situation and corresponds to an equivalent triangle out the other side of the planet).	1
9.	D Using the formula given on page 2 : $\begin{aligned} a=\sqrt[3]{\frac{G M_{E} T^{2}}{4 \pi^{2}}} & =\sqrt[3]{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times(24 \times 60 \times 60)^{2}}{4 \pi^{2}}} \\ & =4.22 \times 10^{7} \mathrm{~m} \end{aligned}$ So the circumference $=2 \pi a=2.65 \times 10^{8} \mathrm{~m}$ and hence the average separation is that divided by 450, which is 590 km . Note that this is technically the length of the arc between the two satellites, but since the angle between each is less than a degree it means that calculating the direct line of sight distance is only negligibly shorter.	1
10.	D Since $b \propto 1 / r^{2}$ we can say that at Ultima Thule the Sun is 43.4^{2} times fainter in brightness than it is at the Earth. Using the formula given on page 2, this corresponds to a change in magnitude of: $\Delta m=\frac{1}{0.4} \log 43.4^{2}=8.19$ Finally, we add it to apparent magnitude as viewed from the Earth (since it is less bright), so $-26.74+8.19=-18.55$. This is much brighter than the full moon hence New Horizons will only risk taking a photo of the Earth once it has finished all of its science, as if the Sun is too close to the field of view it would be bright enough to permanently damage the camera.	1

\begin{tabular}{|c|c|c|}
\hline Section B \& \& 10 \\
\hline 11. \& \begin{tabular}{l}
a) \\
The solar day on Mercury is NOT the same as the sidereal (= relative to the stars) day, which would be easily calculated as \(2 / 3 \times 88\) days \(=59\) days [Any student giving that answer for this part receives 0 marks as the question explicitly tells you that it's longer than a Mercurian year] \\
As shown by the diagram above, Mercury's solar day is 176 Earth days (or two Mercurian years, or an equivalent statement) \\
[One mark can be gained for an attempt at a suitable diagram. The correct answer gains both marks, whether or not there is a diagram] \\
[Alternative example written answer for 2 marks: In 88 days Mercury orbits once, and in this time it has rotated \(1 \frac{1}{2}\) times. Starting from facing the Sun at noon, it would have to rotate once just to keep facing the Sun in its orbit, so no day would have passed by. But we are told it rotates an extra half a rotation (so half a day has passed in its year), hence a whole day takes two Mercurian years.]
\end{tabular} \& 2

1
1
1

\hline \& | b) |
| :--- |
| For the Sun to appear stationary, the astronaut must walk at Mercury's rotational speed (as defined by the length of a solar day) $\begin{aligned} v & =\frac{2 \pi R_{\text {Mercury }}}{T} \\ & =\frac{2 \pi \times 2440}{2 \times 88 \times 24} \\ & =3.63 \mathrm{~km} \mathrm{~h}^{-1} \end{aligned}$ |
| This is roughly walking speed! |
| [Allow full ecf in this section for their answer to part a)] | \& 3

1
1
1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Section C \& \& 10 \\
\hline 13. \& \begin{tabular}{l}
a) \\
First, we calculate the mass difference between four hydrogen nuclei and one helium nucleus:
\[
\begin{gathered}
\Delta m=4 m_{\mathrm{H}}-m_{\mathrm{He}}=\left(4 \times 1.674 \times 10^{-27}\right)-6.649 \times 10^{-27} \\
=4.7 \times 10^{-29} \mathrm{~kg}
\end{gathered}
\] \\
We can then use Einstein's most famous equation (\(\mathrm{E}=\mathrm{mc}^{2}\)) to work out the energy released per reaction
\[
E_{\mathrm{p}-\mathrm{p}}=\Delta m c^{2}=4.7 \times 10^{-29} \times\left(3.00 \times 10^{8}\right)^{2}=4.23 \times 10^{-12} \mathrm{~J}
\]
\end{tabular} \& 1

0.5

0.5

\hline \& | b) |
| :--- |
| First, we calculate the number of reactions per second, N : $N=\frac{L_{\odot}}{E_{\mathrm{p}-\mathrm{p}}}=\frac{3.85 \times 10^{26}}{4.23 \times 10^{-12}}=9.10 \times 10^{37}$ |
| Since there are four hydrogen nuclei used per reaction, the total number of hydrogen nuclei fusing per second is 3.64×10^{38} |
| The percentage of hydrogen mass converted into energy is simply the change in mass in the $p-p$ chain divided by the total mass of hydrogen used in the p-p chain: $\frac{\Delta m}{4 m_{\mathrm{H}}}=\frac{4.7 \times 10^{-29}}{4 \times 1.674 \times 10^{-27}}=0.702 \%$ | \& 2

0.5
0.5

1

\hline \& | c) |
| :--- |
| First, we can work out the total mass of hydrogen available for fusion: $M_{\mathrm{H}}=13 \% \times 71 \% \times M_{\odot}=1.84 \times 10^{29} \mathrm{~kg}$ |
| By using our answer to part b) for the percentage mass change of the hydrogen, we can calculate how much mass will be converted into energy by the process: $\Delta M_{\mathrm{H}}=0.702 \% \times 1.84 \times 10^{29}=1.29 \times 10^{27} \mathrm{~kg}$ |
| This can be converted into the total energy released by the Sun over its lifetime: $E_{\mathrm{tot}}=\Delta M_{\mathrm{H}} c^{2}=1.29 \times 10^{27} \times\left(3.00 \times 10^{8}\right)^{2}=1.16 \times 10^{44} \mathrm{~J}$ |
| Assuming a constant luminosity, we can then calculate the hydrogen burning lifetime of the Sun: $t_{\odot}=\frac{E_{\text {tot }}}{L_{\odot}}=\frac{1.16 \times 10^{44}}{3.85 \times 10^{26}}=3.01 \times 10^{17} \mathrm{~s}=9.56 \times 10^{9} \text { years }$ |
| [Must be in years for the final mark] | \& 3

0.5
0.5

1
1

\hline
\end{tabular}

