
BAAO 2018/19 Solutions and Marking Guidelines 

 

Note for markers: 

 Answers to two or three significant figures are generally acceptable. The solution may give more in 

order to make the calculation clear. Units should be present on final answers when appropriate. 

 There are multiple ways to solve some of the questions; please accept all good solutions that arrive 

at the correct answer. If a candidate gets the final (numerical) answer then allow them all the marks 

for that part of the question (as indicated in red), so long as there are no unphysical / nonsensical 

steps or assumptions made. 

 

Q1 – Parker Solar Probe        [25 marks] 

a. When the probe is at its closest perihelion: 

i. Calculate the apparent magnitude of the Sun, given that from Earth 𝓂⊙ = -26.74. 

 

ratio of brightnesses,
b1

b0
=

(1 au)2

(9.86 R⊙)
2 =

(1.50×1011)
2

(9.86×6.96×108)2 = 478    [1] 

 ∴ 𝓂new = 𝓂⊙ − 2.5 log (
b1

b0
) = −26.74 − 6.698  

     = −33.44    [1] [2] 

[Allow calculating the solar absolute magnitude, ℳ⊙ = 4.829, as an alternative first mark] 

 

ii. Calculate the temperature the heat shield must be able to survive. Assume that the heat 

shield of the probe absorbs all of the incident radiation, radiates as a perfect black body, and 

that only one side of the probe ever faces the Sun (to protect the instruments) such that the 

emitting (surface) area is double the absorbing (cross-sectional) area. 

 

For thermal balance, power absorbed must equal power emitted, so 

 
𝐿⊙

4𝜋𝑟2 × 𝐴𝑎𝑏𝑠 = 𝜎𝐴𝑒𝑚𝑖𝑡𝑇4 

But since Aemit = 2 × Aabs then 

 
𝐿⊙

4𝜋𝑟2 = 2𝜎𝑇4    ∴         𝑇 = √
𝐿⊙

8𝜋𝜎𝑟2

4
      [1] 

    = √
3.85×1026

8π×5.67×10−8×(9.86×6.96×108)2

4
  [1] 

    = 1550 K     [1] [3] 

 

b. Given that in its final orbit PSP has an orbital period of 88 days, calculate the speed of the probe as it 

passes through the minimum perihelion. Give your answer in km s-1. 

 

Using Kepler’s third law to find the semi-major axis of the final orbit, 

 𝑇2 =
4𝜋2

𝐺𝑀
𝑎3       ∴        𝑎 = √

𝐺𝑀

4𝜋2 𝑇2
3

 

    = √
6.67×10−11×1.99×1030

4π2 × (88 × 24 × 3600)2
3

  [1] 

    = 5.79 × 1010 m     [1] 

 𝑣 = √𝐺𝑀 (
2

𝑟
−

1

𝑎
)  = √6.67 × 10−11 × 1.99 × 1030 (

2

9.86×6.96×108 −
1

5.79×1010) [1] 

       (= 190766 m s−1) = 191 km s−1  [Must be in km s-1] [1] [4] 



[This will mean that the Parker Solar Probe will become the fastest spacecraft (relative to the Sun) 

ever flown – at this speed you could travel from New York to Tokyo in less than a minute!] 

 

c. After the first flyby of Venus on 3rd October 2018 it was moved into an orbit with a 150 day period, 

and the subsequent first perihelion on 6th November 2018 was at a distance of 35.7 R⊙. Given its 

mass at launch was 685 kg, calculate the total amount of energy that had to be lost by the probe to 

get from this first orbit (ignoring the orbital properties prior to the Venus flyby) to the final orbit. 

Ignore any change in the mass of the probe due to burning fuel. 

 

Using a similar method to the previous question to work out the semi-major axis and perihelion 

speed for the first orbit, 

 𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 8.27 × 1010 m       [1] 

 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 95.3 km s−1        [1] 

The total energy is the sum of the potential and kinetic energies, 

 𝐸𝑡𝑜𝑡 = 𝐸𝑃 + 𝐸𝐾  and 𝐸𝑃 = −
𝐺𝑀𝑚

𝑟
  

At the first perihelion, 

 𝐸𝑡𝑜𝑡 = −
6.67×10−11×1.99×1030×685

35.7×6.96×108 +
1

2
× 685 × (95279)2 

          =              −3.66 × 1012          +         3.11 × 1012 

          = −5.50 × 1011 J       [Allow 1 mark if only have a correct EP or EK term] [2] 

At the final perihelion, 

 𝐸𝑡𝑜𝑡 = −
6.67×10−11×1.99×1030×685

9.86×6.96×108 +
1

2
× 685 × (190766)2 

          =              −1.32 × 1013          +         1.25 × 1013 

          = −7.85 × 1011 J       [Allow 1 mark if only have a correct EP or EK term] [2] 

        ∴ Δ𝐸𝑡𝑜𝑡 = 2.35 × 1011 J        [Ignore a minus sign]    [1] [7] 

 

d. Derive a formula for the distance from the focus for an elliptical orbit, r (SP in the figure) in terms of 

the semi-major axis a, the eccentricity e, and the eccentric anomaly E. 

 

In this diagram: 

cx = cz = a 

SP = r 

cS = ae 

cd = U 

Pd = V 

therefore Sd = cd – cs = U – ae 

For an ellipse, the general equation is 
𝑈2

𝑎2 +
𝑉2

𝑏2 = 1, so the 

points (U,V) on the ellipse are 

 cos 𝐸 =
𝑈

𝑎
 and sin 𝐸 =

𝑉

𝑏
 [1] 

We are also given that 𝑒 = √1 −
𝑏2

𝑎2   ∴   𝑏2 = 𝑎2(1 − 𝑒2) 

Using Pythagoras’ theorem, 

   (𝑺𝑷)2 = (𝑷𝒅)2 + (𝑺𝒅)2 

    ∴   𝑟2 = (𝑏 sin 𝐸)2 + (𝑎 cos 𝐸 − 𝑎𝑒)2      [1] 

  = 𝑎2(1 − 𝑒2) × (1 − cos2 𝐸) + 𝑎2(cos2 𝐸 − 2𝑒 cos 𝐸 + 𝑒2)  [1] 

  = 𝑎2 − 2𝑎2𝑒 cos 𝐸 + 𝑎2𝑒2 cos2 𝐸 

  = 𝑎2(1 − 𝑒 cos 𝐸)2 

        ∴ 𝑟 = 𝑎(1 − 𝑒 cos 𝐸)        [1] [4] 



[Third mark is for eliminating b and writing all expressions in terms of only one trigonometric 

function. A reasonable attempt at a derivation (allowing alternative methods) must be present to get 

the marks for this question (simply writing the answer only scores 1 mark)] 

 

e. Calculate how long PSP spends doing primary science in its final orbit. Give your answer in days. 

 

With the perihelion distance we can find the eccentricity, 

 𝑟𝑝𝑒𝑟𝑖 = 𝑎(1 − 𝑒)  ∴    𝑒 = 1 −
𝑟𝑝𝑒𝑟𝑖

𝑎
= 1 −

9.86×6.96×108

5.79×1010 = 0.882   [1] 

Using the formula just derived we can find E for r = 0.25 au, 

 𝐸 = cos−1 (
1

𝑒
(1 −

𝑟

𝑎
)) = cos−1 (

1

0.882
(1 −

0.25×1.50×1011

5.79×1010 )) = 1.16 rad (= 66.4°) [1] 

Using the formula given we can find M, 

 𝑀 = 𝐸 − 𝑒 sin 𝐸 = 1.16 − 0.882 × sin 1.16 = 0.351 rad (= 20.1°)  [1] 

Allowing for both sides of the ellipse, Δ𝑀 = 0.703 rad (= 40.3°)   [1] 

Movement through the circular orbit has constant angular velocity, meaning 

 
Δ𝑀

Δ𝑡
=

2𝜋

𝑇
  ∴ Δ𝑡 =

𝑇Δ𝑀

2𝜋
=

88×0.703

2𝜋
= 9.84 days (= 9 days 20 hours 12 mins) [1] [5] 

[If they forget the factor of two (so Δt = 4.92 days) allow 4 marks. Allow ±1 hour on the final answer 

to account for intermediate rounding errors. Allow full ecf for using their value of the semi-major 

axis from part b. Must be given in days for the final mark]  

 

  



Q2 – 360 Days in a Year        [25 marks] 

a. How many sidereal days elapse during a year? Give your answer to 2 d.p. 

 

 𝑛𝑠𝑖𝑑𝑇𝑠𝑖𝑑 = 𝑛𝑠𝑜𝑙𝑇𝑠𝑜𝑙    ∴    𝑛𝑠𝑖𝑑 =
𝑛𝑠𝑜𝑙𝑇𝑠𝑜𝑙

𝑇𝑠𝑖𝑑
 =

365.25×24×3600

(23×3600)+(56×60)+4
   [1] 

      = 366.25  (sidereal days)  [1] [2] 

[Must be 2 d.p. for the final mark] 

 

b. Without further calculation, suggest how many sidereal days there would be if a year was in fact only 

360 solar days. 

 

 361 (sidereal days)        [1] [1] 

 

c. What reduction in the Earth’s semi-major axis would be required for the year to be shortened down 

to 360 solar days? 

 

Using Kepler’s third law to work out the new semi-major axis, 

 𝑇2 =
4𝜋2

𝐺𝑀
𝑎3       ∴ 𝑎𝑛𝑒𝑤 = √

𝐺𝑀

4𝜋2 𝑇2
3

 

    = √
6.674×10−11×1.989×1030

4π2 × (360 × 24 × 3600)2
3

 [1] 

    = 1.482 × 1011 m     [1] 

             Δ𝑎 = 𝑎⊕ − 𝑎𝑛𝑒𝑤 = 1.496 × 1011 − 1.482 × 1011 

    = 1.43 × 109 m     [1] [3] 

[If they don’t use the values of fundamental constants given in the question, resulting in a value of 

Δa = 1.83 × 109 m, give 2 marks max] 

 

d. Imagine creating an incredibly powerful rocket, positioned on the Earth’s equator, that when fired 

once can apply a huge force to the Earth in a very short time period, delivering a total impulse of Δp. 

Assuming the Earth’s orbit is initially circular, calculate: 

i. The total impulse required to slow the Earth’s rotation to give a year of 360 solar days, but 

with no change in the orbit. 

 

The sidereal day describes the actual rate of rotation of the Earth, so we need to work out 

the change in angular velocity going from 366.25 sidereal days to 361 sidereal days 

 𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
2𝜋

(23×3600)+(56×60)+4
= 7.2921 × 10−5 rad s−1  [1] 

 𝜔𝑓𝑖𝑛𝑎𝑙   =
2𝜋

(24×3600×365.25/361)
= 7.1876 × 10−5 rad s−1  [1] 

     ∴ Δ𝜔 = 1.0454 × 10−6 rad s−1     [1] 

Evaluating the moment of inertia for the Earth, 

 𝐼 =
2

5
𝑀⊕𝑅⊕

2     =
2

5
× 5.972 × 1024 × (6371 × 103)2 

   = 9.6961 × 1037 𝑘𝑔 𝑚2    [1] 

 Δ𝑝 =
Δ𝐿

𝑅⊕
=

𝐼Δ𝜔

𝑅⊕
=

9.6961×1037×1.0454×10−6

6371×103     [1] 

   = 1.59 × 1025 kg m s−1    [1] [6] 

[If students use solar days rather than sidereal days giving Δω = 1.0453 × 10-6 rad s-1 then 

give 5 marks max (though it will give the same Δp to 4 s.f.). If they don’t use the values of 

fundamental constants given in the question, don’t penalise them in this part] 

 



ii. The total impulse required to change the orbit to give a year of 360 solar days, but with no 

change in the length of a solar day, also explaining how the rocket needs to be fired. 

 

We need to change the orbital speed of the Earth so that that point becomes an aphelion in 

an elliptical orbit with the same semi-major axis as calculated in part c. 

 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
2𝜋×1 au

1 year
=

2𝜋×1.496×1011

24×3600×365.25
= 29786 m s−1   [1] 

 𝑣𝑓𝑖𝑛𝑎𝑙   = √𝐺𝑀⊙ (
2

1 au
−

1

𝑎𝑛𝑒𝑤
)  

  = √6.674 × 10−11 × 1.989 × 1030 (
2

1.496×1011 −
1

1.482×1011) [1] 

  = 29644 m s−1       [1] 

 ∴ Δ𝑣 = 141.4 m s−1       [1] 

 ∴ Δ𝑝 = 𝑀⊕Δ𝑣 = 5.972 × 1024 × 141.4    [1] 

   = 8.44 × 1026 kg m s−1    [1] [6] 

[If they don’t use the values of fundamental constants given in the question, resulting in a 

value of Δp = 1.81 × 1027 kg m s-1, give 5 marks max for this calculation. Allow a tolerance of 

±0.20 × 1026 kg m s-1 to account for intermediate rounding errors. Give full ecf on value for 

anew taken from part c.] 

 

The rocket needs to be fired towards the horizon at sunrise   [1] [1] 

[Accept a clear diagram showing the reaction force of the rocket on the ground creating a 

clockwise moment in the orbit and pointed at the centre of the Earth. Allow sunset if it’s 

clearly consistent with the direction of rotation of the Earth on its axis and as it moves 

around the Sun, since they weren’t explicitly specified as anti-clockwise in the question] 

 

e. Tidal interactions between the Moon and the Earth mean that the Earth’s rotation rate is slowing 

down, such that a solar day has lengthened over the last 2800 years by an average of 2.3 ms per 

century. Similar interactions between the Earth and the Sun, as well as mass loss by the Sun due to 

nuclear fusion and the solar wind, mean that the distance between them is increasing by about 1.5 

cm per year. Assuming these rates have stayed constant over time and that the Earth’s orbit has 

remained circular throughout, is there any time in either the Earth’s past or future when it had or 

when it will have a year with 360 solar days? Give your answer in Myr (where 1 Myr = 106 years). [For 

reference, the age of the Earth is 4543 Myr.] 

 

In 1 Myr, a⊕ has increased by 15 km and Tsol has lengthened by 23 s [need both] [1] 

We want to satisfy the condition 

 
new year duration

new solar day
= 360        [1] 

Using Kepler’s third law for the new year duration, 

 
√

4𝜋2

6.674×10−11×1,989×1030(1.496×1011+15000𝑥)3

(24×3600)+23𝑥
= 360     [1] 

 𝑥 = 54.5 Myr (positive value indicates it’s in the future)   [3] [6] 

[Allow any valid method to solve the cubic, such as using their graphical calculator to plot the graph 

and find roots, or even a trial and error iteration. Some will use a first order binomial expansion to 

expand the brackets and get a linear expression leading to 54.88 Myr – give full marks for this 

approach. Using less precise fundamental constants gives a value of 69.98 Myr (and 70.63 Myr for 

the linear approach) – give 5 marks max. If the student suggests it is in the past give 5 marks max] 

 

  



Q3 – Stellar Mass Limits        [25 marks] 

a. Given the Sun’s composition has hydrogen fraction, X = 0.72, helium fraction Y = 0.26 and ‘metals’ 

(i.e. any element lithium and heavier) fraction Z = 0.02, estimate the temperature at the centre of the 

Sun. 

 

 �̅� =
𝑚𝑝

2𝑋+3𝑌 4⁄ +𝑍/2
=

1.67×10−27

(2×0.72)+(3×0.26 4)+0.02/2⁄
= 1.02 × 10−27 kg (= 0.608 𝑚𝑝) [1] 

 𝑇𝑖𝑛𝑡 =
𝐺𝑀⊙�̅�

𝑘𝐵𝑅⊙
=

6.67×10−11×1.99×1030×1.02×1027

1.38×10−23×6.96×108 = 1.40 × 107 K   [1] [2] 

 

b. Classically, two protons need to have enough energy to overcome their electrostatic repulsion in 

order to fuse. Calculate the value of Tclassical necessary to allow fusion to occur, given that at that point 

b = 1 fm (= 10-15 m). [You should find that it’s much larger than your answer to part a.] 

 

Assuming both protons are heading straight towards each other, 

 Total 𝐸𝐾 = 2 ×
3

2
𝑘𝐵𝑇𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙       [1] 

Equating with the potential energy at the point where they can fuse, 

 Total 𝐸𝐾 = 𝐸𝑃 ∴ 𝑇𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 =
1

4𝜋𝜖0

𝑒2

𝑏

1

2×
3

2
𝑘𝐵

     [1] 

          =
1

4𝜋×8.85×10−12

(1.60×10−19)
2

10−15

1

3×1.38×10−23  [1] 

          = 5.56 × 109 K     [1] [4] 

[Assuming one proton is stationary, resulting in Tclassical = 1.11 × 1010 K, gives 3 marks max] 

 

c. Given that the proton momentum is related to the average kinetic energy of a particle in the plasma 

by EK = p2/2mp calculate the value of λ and hence calculate Tquantum. [You should find that it’s below 

your answer to part a.] 

 

 𝜆 =
ℎ

𝑝
∴ 𝑝 =

ℎ

𝜆
   and   2 × 𝐸𝐾 = 2 ×

𝑝2

2𝑚𝑝
= 𝐸𝑃 =

1

4𝜋𝜖0

𝑒2

𝜆
 

 ∴
ℎ2

𝜆2𝑚𝑝
=

1

4𝜋𝜖0

𝑒2

𝜆
  ∴    𝜆 =

4𝜋𝜖0ℎ2

𝑚𝑝𝑒2       [1] 

    =
4𝜋×8.85×10−12×(6.63×10−34)

2

1.67×10−27×(1.60×10−19)2     [1] 

    = 1.14 × 10−12 m     [1] [3] 

[First mark is for eliminating p and equating with the expression for EP. Allow full ecf for this 

calculation if assuming the stationary proton case, leading to λ = 5.72 × 10-13 m] 

 

 
3

2
𝑘𝐵𝑇𝑞𝑢𝑎𝑛𝑡𝑢𝑚 =

ℎ2

2𝜆2𝑚𝑝
∴ 𝑇𝑞𝑢𝑎𝑛𝑡𝑢𝑚 =

ℎ2

3𝜆2𝑚𝑝𝑘𝐵
     [1] 

           =
(6.63×10−34)

2

3×(1.14×10−12)2×1.67×10−27×1.38×10−23 [1] 

           = 4.86 × 106 K    [1] [3] 

[First mark is for an expression for Tquantum in terms of known variables. In the stationary proton case 

you get 1.95 × 107 K, which is above the value in part a. and so only 2 marks max for this calculation] 

 

[Despite our simplifying assumptions, this is close to the real value of the temperature needed in a 

star like to Sun to undergo hydrogen fusion, which is ≈ 3 × 106 K. Deuterium fusion is possible at 

lower temperatures since each molecule has more mass and hence more momentum at a given 

temperature, so some very small stars (called brown dwarfs) achieve the required temperature of    

≈ 4.5 × 105 K. The ability to fuse for even a short time is how large gas giants and small stars are 

distinguished, and is investigated further in the next part of the question] 



d. Assuming the star to be of uniform density at this limit with ρ = mpne and the electrons to be in 

thermal equilibrium with the plasma, show that the minimum mass of a star for which Tint = Tquantum is 

≈ 0.1 M⊙. 

 

 𝑀𝑚𝑖𝑛 =
4

3
𝜋𝑅3𝜌 =

4

3
𝜋𝑅3𝑚𝑝𝑛𝑒 =

4

3
𝜋𝑅3 𝑚𝑝

𝜆𝑒
3            ∴ 𝑅 =  𝜆𝑒 (

𝑀𝑚𝑖𝑛
4

3
𝜋𝑚𝑝

)

1/3

  [1] 

     

 
𝑝𝑒

2

2𝑚𝑒
=

3

2
𝑘𝐵𝑇𝑞𝑢𝑎𝑛𝑡𝑢𝑚 ∴ 𝑝𝑒 = √3𝑚𝑒𝑘𝐵𝑇𝑞           (= 1.35 × 10−23 kg m s−1) [1] 

            ∴ 𝜆𝑒 =
ℎ

𝑝𝑒
=

ℎ

√3𝑚𝑒𝑘𝐵𝑇𝑞
      (= 4.90 × 10−11 m)  [1] 

 𝑇𝑖𝑛𝑡 =
𝐺𝑀𝑚𝑖𝑛�̅�

𝑘𝐵𝑅
∴ 𝑀𝑚𝑖𝑛 =

𝑇𝑞𝑘𝐵𝑅

𝐺�̅�
=

𝑇𝑞𝑘𝐵

𝐺�̅�

ℎ

√3𝑚𝑒𝑘𝐵𝑇𝑞
(

𝑀𝑚𝑖𝑛
4

3
𝜋𝑚𝑝

)

1/3

 

  ∴ 𝑀𝑚𝑖𝑛
2/3

=
√𝑇𝑞𝑘𝐵

𝐺�̅�

ℎ

√3𝑚𝑒
(

4

3
𝜋𝑚𝑝)

−1/3
     [1] 

   =
√4.86×106×1.38×10−23

6.67×10−11×1.02×10−27

6.63×10−34

√3×9.11×10−31
(

4

3
𝜋 × 1.67 × 10−27)

−1/3
 [1] 

   = 2.54 × 1019 kg2/3      [1] 

  ∴ 𝑀𝑚𝑖𝑛 = 1.28 × 1029 kg = 0.064 𝑀⊙  [Must be in M⊙] [1] [7] 

[If students assume the star is a fully ionised pure hydrogen plasma, such that  �̅� = 0.5 𝑚𝑝 and 

leading to Mmin = 0.086 M⊙ give full marks (this was the intended answer for this question, but the 

value of �̅� to choose was ambiguous so most students will use their value from part a.) If they use 

the value of Tquantum from the stationary proton case, getting Mmin = 0.18 M⊙, give 6 marks max] 

 

[The real lower limit for a star to join the main sequence is about 0.08 M⊙, or about 83 times the 

mass of Jupiter. In practice, the theoretical lower limit varies with the metallicity of the star – for a 

star like the Sun it is 0.075 M⊙, whilst for a pure hydrogen star it is 0.092 M⊙ (most stars we can see 

have a metallicity that falls between these two)] 

 

e. By balancing the radiative acceleration with the gravitational acceleration at the surface of a star, 

derive a formula for LEdd in terms of M, and hence calculate the maximum mass of a star with a 

hydrogen fraction like the Sun. Give your answer in M⊙. 

 

Balancing the radiative acceleration term with the gravitational one, 

 𝑔𝑟𝑎𝑑 = 𝑔𝑔𝑟𝑎𝑣 ∴
𝜅𝑒𝐼

𝑐
=

𝐺𝑀

𝑅2        [1] 

 𝐼 =
𝐿𝐸𝑑𝑑

4𝜋𝑅2           ∴ 𝐿𝐸𝑑𝑑 =
4𝜋𝐺𝑀𝑐

𝜅𝑒
  (=

8𝜋𝐺𝑀𝑐𝑚𝑝

𝜎𝑇(1+𝑋)
)     [1] [2] 

[LEdd can be given in terms of κ or in terms of σT for the second mark] 

 

 𝜅𝑒 =
𝜎𝑇

2𝑚𝑝
(1 + 𝑋) =

66.5×10−30

2×1.67×10−27
(1 + 0.72) = 0.03425 m2 kg−1  [1] 

Using the given mass-luminosity relation, 

 
𝐿𝐸𝑑𝑑

𝐿⊙
= (

𝑀𝑚𝑎𝑥

𝑀⊙
)

3

∴
4𝜋𝐺𝑀𝑚𝑎𝑥𝑐

𝐿⊙𝜅𝑒
=

𝑀𝑚𝑎𝑥
3

𝑀⊙
3 ∴ 𝑀𝑚𝑎𝑥 = √

4𝜋𝐺𝑐𝑀⊙
3

𝐿⊙𝜅𝑒
   [1] 

               = √
4𝜋×6.67×10−11×3.00×108×(1.99×1030)3

3.85×1026×0.03425
 [1] 

               = 3.88 × 1032 kg = 195 𝑀⊙ [1] [4] 

[The answer must be in M⊙ for the final mark. Full marks can be awarded without κ being calculated 

explicitly. Watch for incorrect conversions from fm2 to m2 (1 fm2 = 10-30 m2) with σT] 

 

[The real upper limit on stars is about 200 M⊙, so this simplified model has done rather well] 



Q4 – Superluminal Jets        [25 marks] 

a. Show, with use of an appropriate diagram, that the apparent value of the scaled transverse speed 

(for a jet coming towards us) is 𝛽𝑎𝑝𝑝 =
𝛽 𝑠𝑖𝑛 𝜃

1−𝛽 𝑐𝑜𝑠 𝜃
. 

 

Attempt at suitable diagram [be flexible] [2] 

 

Apparent distance moved in time Δt, 

 𝐴𝐵 = 𝑑𝑎𝑝𝑝 = 𝑣 sin 𝜃 × Δ𝑡  [1] 

 

Difference in distances moved by photons, 

 𝐵𝐸 = 𝑐Δ𝑡 − 𝑣 cos 𝜃 × Δ𝑡 

 

So apparent time delay, 

 Δ𝑡𝑎𝑝𝑝 =
𝐵𝐸

𝑐
= Δ𝑡 − 𝛽 cos 𝜃 × Δ𝑡 [1] 

 

So apparent speed, 

 𝑣𝑎𝑝𝑝 =
𝑑𝑎𝑝𝑝

Δ𝑡𝑎𝑝𝑝
=

Δ𝑡×𝑣 sin 𝜃

Δ𝑡−𝛽 cos 𝜃×Δ𝑡
  [1] [5] 

 ∴ 𝛽𝑎𝑝𝑝 =
𝑣𝑎𝑝𝑝

𝑐
=

𝛽 sin 𝜃

1−𝛽 cos 𝜃
 

[Allow any convincing derivation, given that it was a ‘show that’ question. Any derivation without a 

diagram scores 3 marks max. Most diagrams with two sightlines, v & θ should score at least 1 mark] 

 

b. Determine the relationship between β and θ that maximises βapp for a given value of β, and hence 

determine the minimum value of β needed to give rise to superluminal apparent speeds (i.e. when 

𝛽𝑎𝑝𝑝
𝑚𝑎𝑥 > 1). [You are given that a graph of βapp against θ has only one turning point in the range 0 < θ 

< π, and that it is a maximum.] 

 

Want to find where 
𝑑𝛽𝑎𝑝𝑝

𝑑𝜃
= 0, so need to differentiate our expression [with product / quotient rule] 

 
𝑑𝛽𝑎𝑝𝑝

𝑑𝜃
=

𝛽 cos 𝜃(1−𝛽 cos 𝜃)−𝛽 sin 𝜃(𝛽 sin 𝜃)

(1−𝛽 cos 𝜃)2 = 0     [1] 

 ∴ (𝛽𝑎𝑝𝑝 is maximised for a given value of 𝛽 when) 𝛽 = cos 𝜃   [1] [2] 

 

Putting this into the formula from part a. and evaluating for when 𝛽𝑎𝑝𝑝 = 1, 

 𝛽𝑎𝑝𝑝
𝑚𝑎𝑥 =

cos 𝜃 sin 𝜃

1−cos 𝜃 cos 𝜃
= cot 𝜃         (=

𝛽

√1−𝛽2
)     [1] 

 If cot 𝜃 = 1,    𝜃 =
𝜋

4
    ∴ 𝛽𝑚𝑖𝑛 = cos 𝜃 = cos

𝜋

4
=

√2

2
  (= 0.707)   [1] [2] 

 

c. Calculate βapp for both jets, and use your formula from part b. to calculate the minimum value of β to 

explain the apparent superluminal motion. 

 

We need to convert μ from milliarcseconds a day to radians a second, 

 𝑣𝑎 = 𝜇𝑎𝑑𝑠𝑦𝑠𝑡𝑒𝑚 =
23.6×10−3

3600
×

2𝜋

360
× (11 × 103 × 3.09 × 1016)   [1] 

    = 4.50 × 108 𝑚 𝑠−1   ∴ 𝛽𝑎𝑝𝑝,𝑎 = 1.50    [1] [2] 

Similarly, for the receding jet,     𝛽𝑎𝑝𝑝,𝑟 = 0.636   [2] [2] 

[Values of μa and μr are 1.32 × 10-12 rad s-1 and 5.61 × 10-13 rad s-1 respectively] 

 𝛽𝑎𝑝𝑝
𝑚𝑎𝑥 = cot 𝜃 = 1.50       ∴ 𝛽𝑚𝑖𝑛,𝑎 = cos(cot−1 1.50) = 0.832   [1] [1] 

[No requirement to use the data from the receding jet (which gives 𝛽𝑚𝑖𝑛,𝑟 = 0.824)] 



d. Derive a formula for the distance, D, as a function of θ, μa and μr (i.e. independent of β), and hence 

calculate θ. 

 

Rearranging the given formulae, 

 𝐷𝜇𝑎(1 − 𝛽 cos 𝜃) = 𝛽𝑐 sin 𝜃 and 𝐷𝜇𝑟(1 + 𝛽 cos 𝜃) = 𝛽𝑐 sin 𝜃 

 𝐷𝜇𝑎𝜇𝑟 (
1

𝛽
− cos 𝜃) = 𝜇𝑟𝑐 sin 𝜃 ① 𝐷𝜇𝑎𝜇𝑟 (

1

𝛽
+ cos 𝜃) = 𝜇𝑎𝑐 sin 𝜃 ② [1] 

 ② – ① 𝐷𝜇𝑎𝜇𝑟(2 cos 𝜃) = (𝜇𝑎 − 𝜇𝑟)𝑐 sin 𝜃 

             ∴ 𝐷 =
𝑐

2
(

𝜇𝑎−𝜇𝑟

𝜇𝑎𝜇𝑟
) tan 𝜃      [1] [2] 

[This is just one approach – allow any reasonable attempt that gets the right answer] 

 

 𝜃 = tan−1 (
2𝐷

𝑐
(

𝜇𝑎𝜇𝑟

𝜇𝑎−𝜇𝑟
)) 

     = tan−1 (
2×11×103×3.09×1016

3.00×10^8
(

1.32×10−12×5.61×10−13

1.32×10−12−5.61×10−13))    (= tan−1 2.206) [1] 

     = 65.6°       (= 1.15 rad)       [1] [2] 

 

e. Show that βcosθ can be expressed purely as a function of μa and μr, and hence use your value of θ to 

calculate the value of β. 

 

Rearranging the given formulae again, 

 𝐷𝜇𝑎(1 − 𝛽 cos 𝜃) = 𝛽𝑐 sin 𝜃 ① and 𝐷𝜇𝑟(1 + 𝛽 cos 𝜃) = 𝛽𝑐 sin 𝜃 ② 

 ② – ① 𝐷𝜇𝑟 + 𝐷𝜇𝑟𝛽 cos 𝜃 + 𝐷𝜇𝑎𝛽 cos 𝜃 − 𝐷𝜇𝑎 = 0   [1] 

             ∴ 𝛽 cos 𝜃 =
𝜇𝑎−𝜇𝑟

𝜇𝑎+𝜇𝑟
       [1] [2] 

[This is just one approach – allow any reasonable attempt that gets the right answer] 

 

 𝛽 cos 𝜃 =
23.6−10.0

23.6+10.0
= 0.405       [1] 

        ∴ 𝛽 =
0.405

cos 65.6°
= 0.981       [1] [2] 

 

[When they were discovered, these blobs of plasma in the jet from the microquasar were the fastest 

moving that anyone had ever seen in our galaxy!] 

 

f. Greiner et. al (2001) measure Kd = 140 km s-1, Porb = 33.5 days, and a mass ratio for the two objects of 

MBH/M* = 12.3. Using the assumption that i = θ, calculate MBH. Give your answer in M⊙. 

 

Rewriting the given equation in terms of the ratio M*/MBH, 

 
𝑀𝐵𝐻

3 sin3 𝜃

𝑀𝐵𝐻
2 (1+

𝑀∗
𝑀𝐵𝐻

)
2 =

𝑃𝑜𝑟𝑏𝐾𝑑
3

2𝜋𝐺
   ∴ 𝑀𝐵𝐻 =

𝑃𝑜𝑟𝑏𝐾𝑑
3

2𝜋𝐺

(1+
𝑀∗

𝑀𝐵𝐻
)

2

sin3 𝜃
    [1] 

     =
(33.5×24×3600)×(140×103)

3

2𝜋×6.67×10−11 ×
(1+12.3−1)

2

sin3 65.6°
 [1] 

     = 2.93 × 1031 kg = 14.7 𝑀⊙     [1] [3] 

[Must be in M⊙ for the final mark] 

 

[At the time of discovery, this meant the black hole in the microquasar was the heaviest stellar black 

hole known. Subsequent measurements have made the distance a little closer than 11 kpc, and so 

the mass has been revised down, but until the discovery of the black holes behind detections of 

gravitational waves (with masses about double this) it was still one of heaviest known] 


