BRITISH PHYSICS OLYMPIAD 2015-16
 A2 Challenge Sept/Oct 2015

SOLUTIONS

Question 1

a.
i) Suitable diagram ∇
ii) Momentum calculation; $1 \times 0.2+2 \times(-0.2)=0$ i.e. total zero. At rest ∇
iii) At a point dividing the distance between the ships in the ratio 1:2 (closer to 2 tonne mass) ∇ Zero \square
iv) Before $K E=1 / 2 m_{1} u_{1}{ }^{2}+1 / 2 m_{2} u_{2}{ }^{2}=1 / 2\left(1000 \times 0.2^{2}+2000 \times 0.1^{2}\right)=30 \mathrm{~J} \quad \nabla$;

After-zero $\quad \nabla$
v) Suitable diagram ∇, Momentum calculation, total $0.1 \mathrm{~m} \mathrm{~s}^{-1}$ to the right ∇; position of c of m as before ∇; 45 J before and 15 J after ∇
vi) Kinetic energies may differ according to frame of reference, but the loss remains the same ∇
(As a de-brief point, it is instructive to demonstrate that the energy change, $\Delta E=\frac{1}{2}\left(m_{1}+m_{2}\right)\left(u_{1}-u_{2}\right)^{2}$ is unaltered by a change to a frame of reference moving at speeds, which simply alters both u_{1} and u_{2} by the same amount, $\left(u_{1}-u_{2}\right) \rightarrow\left(\left(u_{1}+\Delta u\right)-\left(u_{2}+\Delta u\right)\right)$ leaving the term $\left(u_{1}-u_{2}\right)$ unaltered.)
b.
i) Momentum calculation to show appropriate velocities ∇

Initial velocity, u. Final velocities v_{1}, v_{2}. Identical masses.
Mom cons. $\quad v_{1}+v_{2}=u \quad$ (cancel through the m)
KE cons. $\quad v_{1}^{2}+v_{2}^{2}=u^{2} \quad$ (cancel through by $1 / 2 m$)
Algebra: $\quad\left(u-v_{1}\right)\left(u+v_{1}\right)=v_{2}^{2}$
And also $\left(u-v_{1}\right)=v_{2} \quad$ from the initial relation
If $v_{2} \neq 0$ then can divide the two equations, to get $\left(u+v_{1}\right)=v_{2}$.
Now add $\left(u+v_{1}\right)=v_{2}$ and $\left(u-v_{1}\right)=v_{2}$ to obtain $u=v_{2}$, so that $v_{1}=0$
Note that if $v_{2}=0$ then $v_{1}=u$ and momentum and KE are both conserved, but the particles do not actually collide.

There are several other algebraic routes, including direct substitution for u say, giving $v_{1} \cdot v_{2}=0$. So either $v_{1}=0$ or $v_{2}=0$.
ii) Neutron comes to rest; proton ejected (as masses are virtually equal)
iii)

Let initial velocity be v and final velocities be $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$. Vector diagram to show $m \overrightarrow{v_{1}}+m \overrightarrow{v_{2}}=m \vec{v} \quad \nabla \quad$ Elastic collision gives $1 / 2 \mathrm{mv}_{1}{ }^{2}+1 / 2 m v_{2}{ }^{2}=1 / 2 m v^{2}$ so $v_{1}{ }^{2}+v_{2}{ }^{2}=v^{2}$ implying (Pythagoras) that the momentum diagram is a right-angled triangle, proving the proposition. \downarrow owwt

Note: the analysis given in (i) is adaptable. Write cons. of mom as $\vec{u}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}}$. Squaring, $u^{2}=v_{1}^{2}+v_{2}^{2}+2 \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}$. With the KE result, $u^{2}=v_{1}^{2}+v_{2}^{2}$ clearly $2 \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=0$
Thus $v_{1}=0$ (linear collision as in (i)), $v_{2}=0$ (no collision), or $\cos \theta=0 \Rightarrow \theta=\pi / 2$
iv) Traces (such as cloud chamber tracks) seen to be perpendicular, when in the plane normal to the line of sight.
[16 marks]

Question 2

a.
i) Initial volume $1000 \mathrm{~mm}^{3}$; final volume $1000.40 \mathrm{~mm}^{3} \quad \nabla$ Increased (trivial)
ii) Bonds between atoms stretched, so a net volume increase reasonable owtte $\quad \square$
iii) lateral strain $=(-) 0.0003$; longitudinal strain $=0.001$. So Poisson Ratio (-)0.3

च.
b.
i) Use binomial theorem or error theory ideas :
$V=l A$ so $\frac{\delta V}{V}=\frac{\delta A}{A}+\frac{\delta l}{l}$, from binomial or by differentiation.
Since $\frac{\delta V}{V}=0$ for rubber, and since $\frac{\delta l}{l}$ increases by 2%, then $\frac{\delta A}{A}$ reduces by $2 \% \quad \nabla$
ii) $\quad A=w^{2}$ so $\frac{\delta A}{A}=2 \frac{\delta w}{w}$. Hence $\frac{\delta w}{w}$ is reduced by $1 \% \quad \square$
iii) By inspection (-)0.5 $\quad \square$

Question 3

a. i) Suitable symmetrical diagram
ii) Angle-sum of triangles gives $L i$ for incident ray as $(A+D) / 2 \quad \nabla \quad L r=A / 2 \quad \nabla$

$$
\mathrm{n}=\frac{\sin ((A+D) / 2)}{\sin (A / 2)} \quad \text { follows from Snell's Law } \nabla
$$

i) For $\sin \theta \approx \theta$ this reduces to $n=\frac{(A+D) / 2}{A / 2} \nabla$ which re-arranges to $D=(n-1) A$
b.
i) \quad Deviation $=(n-1) A=0.5 \times 0.02=0.01 \mathrm{rad}$
ii) $\quad \mathrm{SS}_{1}=$ distance to prism \times deviation angle $=0.1 \mathrm{~m} \times 0.01=0.001 \mathrm{~m} \quad \nabla$ So $S_{1} S_{2}=0.002 \mathrm{~m}$.
iii) Both derived from same source owtte
iv) fringe width, $w=\mathrm{L} \lambda / \mathrm{S}_{1} \mathrm{~S}_{2}=(1.9+0.1) \nabla \times 5 \times 10^{-7} / 0.002=5 \times 10^{-4} \mathrm{~m} \quad \nabla$
[12 marks]

Question 4

a. A real source with emf 3.0 V and internal resistance 1.0Ω is connected to a resistor of resistance 2.0Ω.
i) $\quad \mathrm{I}=\mathrm{V} / \mathrm{R}_{\text {circuit }}=3 / 3=1 \mathrm{~A} \nabla \quad ; \mathrm{V}=\mathrm{IR}_{2 \Omega}=1 \times 2=2 \mathrm{~V} \nabla$
ii) Net emf $=3 \mathrm{~V}-3 \mathrm{~V}=0$, thus zero current also ∇
iii) By symmetry, or folding over the circuit to superimpose the cells and 1Ω resistors, the system has $\mathrm{E}=3 \mathrm{~V}, \mathrm{r}=0.5 \Omega$ connected to 2.5Ω load. $\mathrm{I}=\mathrm{V} / \mathrm{R}=3 \mathrm{~V} / 3 \Omega=1 \mathrm{~A} \quad \nabla$
iv) \quad Now for whole circuit, $\mathrm{I}=\mathrm{V} / \mathrm{R}=6 \mathrm{~V} / 2 \Omega=3 \mathrm{~A}$. \square Consider either cell: $\mathrm{V}_{\mathrm{XY}}=$ zero ∇
b. We will now explore the effect of internal resistance in some practical situations.
i) Current through person is $\mathrm{V} / \mathrm{R}=5000 \mathrm{~V} / 10001000 \approx 0.5 \mathrm{~mA}$ (or potential divider idea, pd across person $\approx 5 \mathrm{~V}$ leads to $\mathrm{I}=0.5 \mathrm{~mA}$) \boxtimes Therefore harmless (trivial)
ii)

1) Vit $=12 \mathrm{~V} \times 1 \mathrm{Ax}(60 \times 3600) \mathrm{s}=2.59 \mathrm{MJ}$
2) $\quad \mathrm{I}=\mathrm{V} / \mathrm{R}=12 / 0.01=1200 \mathrm{~A} \quad \nabla ; \quad \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}=144 / 0.01=14.4 \mathrm{~kW} \nabla$
3) Heat inside the battery ∇ eventually boils electrolyte with explosion risk or other sensible comment.
[11 marks]

Question 5

This question looks at some practical consequences of the evaporation of liquids.
Placing a liquid in a vacuum (e.g. a leak from a space vehicle) forces it to evaporate and can lead to rapid cooling.
a. $\mathrm{mc} \Delta \mathrm{T}=0.01 \mathrm{~mL}$ hence $\Delta \mathrm{T}=0.01 \mathrm{~L} / \mathrm{c}=.01 \times 2.26 \times 10^{6} / 4200=5.4^{\circ} \mathrm{C} \nabla$, new temperature (assuming no other losses) is $4.6^{\circ} \mathrm{C} \quad \nabla$
b. All factors lead to rapid evaporation and thus heat loss and sensation of cold owtte \square
c. Draught enhances evaporation rate. Thus faster cooling owtte \square
d. More volatile liquids evaporate even faster ∇

