

BRITISH PHYSICS OLYMPIAD 2015-16

A2 Challenge Sept/Oct 2015

SOLUTIONS

Question 1

a.

i) Suitable diagram 🗹

- ii) Momentum calculation; $1 \times 0.2 + 2 \times (-0.2) = 0$ i.e. total zero. At rest
- iii) At a point dividing the distance between the ships in the ratio 1:2 (closer to 2 tonne mass)
 ✓ Zero ✓
- iv) Before $KE = \frac{1}{2}m_1 u_1^2 + \frac{1}{2}m_2 u_2^2 = \frac{1}{2}(1000 \times 0.2^2 + 2000 \times 0.1^2) = 30 \text{ J} \quad \square ;$ After - zero \square
- v) Suitable diagram ☑ , Momentum calculation, total 0.1 m s⁻¹ to the right ☑; position of c of m as before ☑; 45 J before and 15 J after ☑
- vi) Kinetic energies may differ according to frame of reference, but the loss remains the same \square (As a de-brief point, it is instructive to demonstrate that the energy change, $\Delta E = \frac{1}{2}(m_1 + m_2)(u_1 - u_2)^2$ is unaltered by a change to a frame of reference moving at speeds, which simply alters both u_1 and u_2 by the same amount, $(u_1 - u_2) \rightarrow ((u_1 + \Delta u) - (u_2 + \Delta u))$ leaving the term $(u_1 - u_2)$ unaltered.)

b.

i)

Momentum calculation to show appropriate velocities \square Initial velocity, u. Final velocities v_1, v_2 . Identical masses.

Mom cons.	$v_1 + v_2 = u$	(cancel through the <i>m</i>)
KE cons.	$v_1^2 + v_2^2 = u^2$	(cancel through by ½ m)
Algebra:	$(u - v_1)(u + v_1) = v_2^2$	
And also	$(u-v_1)=v_2$	from the initial relation

If $v_2 \neq 0$ then can divide the two equations, to get $(u + v_1) = v_2$. Now add $(u + v_1) = v_2$ and $(u - v_1) = v_2$ to obtain $u = v_2$, so that $v_1 = 0$

Note that if $v_2 = 0$ then $v_1 = u$ and momentum and KE are both conserved, but the particles do not actually collide.

There are several other algebraic routes, including direct substitution for u say, giving $v_1 \cdot v_2 = 0$. So either $v_1 = 0$ or $v_2 = 0$.

iii)

Let initial velocity be v and final velocities be $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$. Vector diagram to show $m \overrightarrow{v_1} + m \overrightarrow{v_2} = m \overrightarrow{v}$ \square Elastic collision gives $\frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2 = \frac{1}{2}mv^2$ so $v_1^2 + v_2^2 = v^2$ implying (Pythagoras) that the momentum diagram is a right-angled triangle, proving the proposition . \square **owwt**

Note: the analysis given in (i) is adaptable. Write cons. of mom as $\vec{u} = \vec{v_1} + \vec{v_2}$. Squaring, $u^2 = v_1^2 + v_2^2 + 2\vec{v_1} \cdot \vec{v_2}$. With the KE result, $u^2 = v_1^2 + v_2^2$ clearly $2\vec{v_1} \cdot \vec{v_2} = 0$ Thus $v_1 = 0$ (linear collision as in (i)), $v_2 = 0$ (no collision), or $\cos \theta = 0 \Rightarrow \theta = \pi/2$

iv) Traces (such as cloud chamber tracks) seen to be perpendicular, when in the plane normal to the line of sight. ☑

[16 marks]

[6 marks]

Question 2

a.

- i) Initial volume 1000 mm³; final volume 1000.40 mm³ 🗹 Increased (trivial)
- ii) Bonds between atoms stretched, so a net volume increase reasonable **owtte**
- iii) lateral strain= (-)0.0003; longitudinal strain= 0.001. So Poisson Ratio (-)0.3 ☑.

b.

i) Use binomial theorem or error theory ideas : $V = lA \operatorname{so} \frac{\delta V}{V} = \frac{\delta A}{A} + \frac{\delta l}{l}$, from binomial or by differentiation. Since $\frac{\delta V}{V} = 0$ for rubber, and since $\frac{\delta l}{l}$ increases by 2%, then $\frac{\delta A}{A}$ reduces by 2% \square ii) $A = w^2 \operatorname{so} \frac{\delta A}{A} = 2 \frac{\delta w}{w}$. Hence $\frac{\delta w}{w}$ is reduced by 1% \square iii) By inspection (-)0.5 \square

Question 3

a. i) Suitable symmetrical diagram ☑

n=

ii) Angle-sum of triangles gives *L* i for incident ray as (A+D)/2 \square *L*r = A/2 \square

i) For
$$\sin \theta \approx \theta$$
 this reduces to $n = \frac{(A+D)/2}{A/2}$ \square which re-arranges to $D = (n-1)A$ \square

b.

- i) Deviation = $(n-1)A = 0.5 \times 0.02 = 0.01 \text{ rad}$
- ii) $SS_1 = distance to prism \times deviation angle = 0.1 m \times 0.01 = 0.001 m \square$ So $S_1S_2 = 0.002$ m. \square
- iii) Both derived from same source \mathbf{owtte} $\mathbf{ t}$
- iv) fringe width, $w = L \lambda / S_1 S_2 = (1.9+0.1) \square x 5x10^{-7} / 0.002 = 5x10^{-4} m \square$

[12 marks]

Question 4

- a. A real source with emf 3.0 V and internal resistance 1.0 Ω is connected to a resistor of resistance 2.0 $\Omega.$
 - i) $I = V/R_{circuit} = 3/3 = 1 A \square$; $V = IR_{2\Omega} = 1 \times 2 = 2 V \square$
 - ii) Net emf = 3 V 3 V = 0, thus zero current also
 - iii) By symmetry, or folding over the circuit to superimpose the cells and 1 Ω resistors, the system has E = 3 V, r = 0.5 Ω connected to 2.5 Ω load. I = V/R = 3 V/3 Ω = 1 A \square
 - iv) Now for whole circuit, I= V/R = 6 V/2 Ω = 3 A. \square Consider either cell: V_{XY} = zero \square
- b. We will now explore the effect of internal resistance in some practical situations.
 - i) Current through person is V/R = 5000 V / 10 001 000 \approx 0.5 mA (or potential divider idea, pd across person \approx 5 V leads to I = 0.5 mA) \square Therefore harmless (trivial)
 - ii)
- 1) Vit = 12 V x 1 A x (60x3600) s = 2.59 MJ ☑
- 2) I = V/R = 12/0.01 = 1200 A \square ; $P = V^2/R = 144/0.01 = 14.4 kW$ \square
- 3) Heat inside the battery ☑ eventually boils electrolyte with explosion risk or other sensible comment.

[11 marks]

Question 5

This question looks at some practical consequences of the evaporation of liquids.

Placing a liquid in a vacuum (e.g. a leak from a space vehicle) forces it to evaporate and can lead to rapid cooling.

- a. mc $\Delta T = 0.01$ mL hence $\Delta T = 0.01$ L/c= .01x 2.26x10⁶ / 4200 = 5.4°C \square , new temperature (assuming no other losses) is 4.6°C \square
- b. All factors lead to rapid evaporation and thus heat loss and sensation of cold owtte 🗹
- c. Draught enhances evaporation rate. Thus faster cooling owtte \square
- d. More volatile liquids evaporate even faster ☑

[5 marks]