British Olympiad in Astronomy and Astrophysics

 April 2015
Solutions and marking guidelines for the BOAA Competition Paper

The total mark for each question is in bold on the right hand side of the table. The breakdown of the mark is below it. There are multiple ways to solve some of the questions, so please accept all the good solutions that arrive at the correct answer.

Question	Answer	Mark
Section A		20
1.	C	2
2.	B	2
3.	D	2
4.	C	2
5.	A	2
6.	C	2
7.	A	2
8.	C	2
9.	C	2
10.	B	2
Section B		10
11.	a. Answer: $42,200 \mathrm{~km}$	3
	On a circular orbit, the centripetal force is due to the gravitational force: $F_{\text {cen }}=F_{g r a v}$	
	$m \omega^{2} r=\frac{G m M_{\text {Earth }}}{r^{2}}$	1
	$r=\sqrt[3]{\frac{G M_{\text {Earth }} T^{2}}{4 \pi^{2}}}$	1
	$T=24$ hours, therefore the radius of the geostationary orbit is:	
	$r=4.22 \times 10^{7} \mathrm{~m} \approx 42,200 \mathrm{~km}$	1
	b. Answer: 6 hours	2
	In the case when the satellite is orbiting the Earth with a period of $T_{0}=24$ hours, but in the opposite direction to Earth's rotation, the relative angular velocity is:	
	$\omega=2 \omega_{0}=\frac{4 \pi}{T_{0}}$	1
	The observer can be considered as being stationary on Earth and the satellite revolving with ω. Because the radius of the geostationary orbit is larger than the radius of the Earth, the satellite will be visible above the horizon for the observer for half of its (relative) orbit,	
	$\Delta t=\frac{\pi}{\omega}=\frac{T_{0}}{4}=6 \text { hours }$	1
	[Since the radius of the orbit is only $6 R_{E}$, the visibility of the satellite is less than 6 hours. In fact it is 5.42 hours.] This occurs twice in a 24 hour period, so strictly it is 12 hours (or 10.8 h). Either answer of 6 h or 12 h gains the mark.	

\begin{tabular}{|c|c|c|}
\hline 12. \& \begin{tabular}{l}
a. Answer: 630 nm \\
From the classical Doppler effect: \(\frac{v}{c} \approx z \approx 0.3\). This is a reasonable approximation as long as \(v \ll c\), otherwise the full relativistic Doppler effect has to be used. \\
Doppler shift formula:
\[
\frac{\lambda-\lambda_{0}}{\lambda_{0}}=\frac{v}{c} \approx z
\] \\
Where \(\lambda_{0}=486.1 \mathrm{~nm}-\) the rest wavelength. Hence:
\[
\lambda=\lambda_{0}(1+z)
\] \\
The observed (redshifted) wavelength is:
\[
\lambda=631.9 \mathrm{~nm} \approx 630 \mathrm{~nm}
\] \\
b. Answer: 4 billion years \\
The time it takes the light (travelling at speed \(c\)) from the galaxy to reach us is:
\[
\Delta t=\frac{r}{c}
\] \\
According to Hubble's law the distance to the galaxy is:
\[
r=\frac{v}{H_{0}}
\] \\
Hence,
\[
\Delta t \approx \frac{z}{H_{0}} \approx \frac{0.3}{72 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}} \sim 4 \text { billion years }
\] \\
In the equation above notice that the unit of \(H_{0}\) is \(s^{-1}\) and take care when doing the conversion from Mpc to km .
\end{tabular} \& 3
1
1
1
1
1
2
1
1
1 \\
\hline Section C \& \& 20 \\
\hline 13. \& \begin{tabular}{l}
a. \\
From Figure 1 identify that the maximum of the eclipse occurs between 09:24 and 09:34, therefore in the image taken at 09:31.
\end{tabular} \& 1 \\
\hline \& \begin{tabular}{l}
b. \\
The brightness of the solar disc is proportional to the visible surface area. The apparent magnitude of the Sun is \(m_{1}=-26.74\) corresponding to a brightness of \(F_{1}\). During the eclipse, the Moon covers \(90 \%\) of the solar disc, thus the visible area of the Sun is only \(10 \%\). The brightness of the solar disc during the maximum of the eclipse, is:
\[
F_{2}=0.1 F_{1}
\] \\
This corresponds to an apparent magnitude \(m_{2}\). Inverting the Pogson's formula, the apparent magnitude of the Sun during the eclipse is:
\[
\begin{gathered}
m_{2}-m_{1}=-\frac{\log _{10} \frac{F_{2}}{F_{1}}}{\log _{10} 2.512} \\
m_{2}=m_{1}-2.5 \log _{10} \frac{F_{2}}{F_{1}} \\
m_{2}=-26.74-2.5 \log _{10} 0.1 \\
m_{2}=-24.24
\end{gathered}
\]
\end{tabular} \& 3

1

1
1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 14 \& \begin{tabular}{l}
a. \\
The percentage of the star's disc covered by the planet is \(1.65 \%\). \\
The light-curve has high quality data, with an error of only \(\sim 0.05 \%\) \\
[Accept \(1.6 \pm 0.1 \%\) or \(1.7 \pm 0.1 \%\) and the errors propagated in the following calculations]
\end{tabular} \& \[
\begin{gathered}
\hline \mathbf{1} \\
0.5 \\
0.5
\end{gathered}
\] \\
\hline \& \begin{tabular}{l}
b. \\
The covered area of the star, during the transit is:
\[
A_{\text {planet }}=\pi R_{\text {planet }}^{2}
\] \\
The percentage determined in a) of \(f=0.0165\) corresponds to:
\[
f=\frac{A_{\text {planet }}}{A_{\text {star }}}=\frac{R_{\text {planet }}^{2}}{R_{\text {star }}^{2}}
\] \\
Therefore, the ratio of the radius of the planet and of the star is:
\[
\frac{R_{\text {planet }}}{R_{\text {star }}}=\sqrt{f}=0.128
\]
\end{tabular} \& 2

1
1

\hline \& | c. |
| :--- |
| Use Newton's third law (which gives the proportionality of Kepler III but with constants): $\frac{T^{2}}{a^{3}}=\frac{4 \pi^{2}}{G\left(M_{\text {star }}+m_{\text {planet }}\right)}$ |
| Neglect $m_{\text {planet }} \ll M_{\text {star }}$ and find the radius of the planet's orbit: $a=\sqrt[3]{\frac{G M_{\text {star }} T^{2}}{4 \pi^{2}}}$ |
| Using the values in the question, $\mathrm{M}_{\text {star }}=1.15 \mathrm{M}_{\text {solar }}$ and the period of $\mathrm{T}=3.525$ days radius of the planet's orbit is: $a=0.047 \mathrm{AU}$ | \& 2

1
1
1

\hline \& | d. |
| :--- |
| From the light curve (Figure 2), the total transit time (from the beginning of the drop, to its end) is: $\Delta t_{\text {total }} \approx 0.13 \text { days } \approx 3.12 \text { hours }$ |
| The transit time is equivalent to the duration of an eclipse from first to last contact, as seen in Figure 3. During the eclipse, the centre of the planet's disc moves a distance equal to $2\left(R_{\text {star }}+R_{\text {planet }}\right)$. Because the star and the planet are practically at the distance from the observer, the speed at which the transit occurs is equal to the circular speed of the planet around the star, $v_{\text {planet }}$: $v_{\text {planet }}=\frac{2\left(R_{\text {star }}+R_{\text {planet }}\right)}{\Delta t_{\text {total }}}=\frac{2 \pi a}{T}$ |
| Hence, $R_{\text {star }}+R_{\text {planet }}=\pi \frac{\Delta t_{\text {total }}}{T} a \sim 8.15 \times 10^{5} \mathrm{~km}$ |
| And using the ratio in b), 0.128 , the radius of the star and of the planet are: $\begin{aligned} R_{\text {star }} & =7.23 \times 10^{5} \mathrm{~km} \approx 1.04 R_{\text {Sun }} \\ R_{\text {planet }} & =0.92 \times 10^{5} \mathrm{~km} \approx 1.32 R_{\text {Jupiter }} \end{aligned}$ | \& 3

1
1

1
1

0.5
0.5

\hline
\end{tabular}

