Physics Olympiad Competition 2012 Paper 1: Solutions

Mark Scheme

Sept/Oct 2011

To order free participation or merit certificates (for scores over 20), see www.bpho.org.uk

Allow error carried forward where this gives sensible answers

Question 1

(a) $17 \times 3.7 \times 10^{10} = 6.3 \times 10^{11}$ decays per second	\checkmark	F 1 1
(b) $6.3 \times 10^{11} \times 5.5 \times 10^{6} \times 1.6 \times 10^{-19} = 0.55$ W per g Mark lost for incorrect order of magnitude	$\checkmark\checkmark$	[1]
		[2]
(c) Mass required = $4,500 \div 0.55 = 8,100 \text{ g} = 8.1 \text{ kg}$	\checkmark	[1]
(d) $4,500 \text{ W} \ge 0.07 = 315 \text{ W}$	\checkmark	
		[1]
(e) Satellites far from the sun receive too little power / area of panels	would nee	d to

(e) Satellites far from the sun receive too little power / area of panels would need to be too great / intensity of solar radiation is too low $owtte^*$ (1]

[Q1: 6 marks]

Question 2

Various approaches:

(a)
$$g \alpha \frac{1}{r^2}$$
 therefore $g r^2 = constant$
 $6,400^2 \ge 9.81 = 6,700^2 \ge g'$ mark for use of 6,700 value
 $g' = \left(\frac{6,400}{6,700}\right)^2 \ge 9.81$ mark for $\left(\frac{6,400}{6,700}\right)^2$ term
 $= 8.95 \text{ m s}^{-2}$
Reduced by 8.8 % full marks for correct answer [3]
(b) $g' = \left(\frac{6,400}{406,400}\right)^2 \ge 9.81$ 400,000 acceptable
 $= (2.4 - 2.5) \ge 10^{-3} \text{ m s}^{-2} = 2.4 - 2.5 \text{ mm s}^{-2}$
[2]

[Q2: 5 marks]

1 $14 + 5 x \frac{1}{2} = 16 \frac{1}{2}$ $16 \frac{1}{2} kg$ 2 $4 + 5 x \frac{1}{2} = 6 \frac{1}{2}$ $6 \frac{1}{2} kg$ 3 $4 + 5 x \frac{1}{2} = 6 \frac{1}{2}$ $6 \frac{1}{2} kg$ 4 $14 + 5 x \frac{1}{2} = 16 \frac{1}{2}$ $16\frac{1}{2} kg$ 4 kg at B & 14 kg at C gives a load of $2\frac{1}{2} kg$ Or $14 kg at B & 4 kg at C gives a load of 2\frac{1}{2} kg A lower centre of gravity is best to stop the case falling over. Hence the second of the two examples in part (c). OR a justified alternative reason. $	Example	Workings out	Load at handle
2 $4 + 5 x \frac{1}{2} = 6 \frac{1}{2}$ $6 \frac{1}{2} kg$ 3 $4 + 5 x \frac{1}{2} = 6 \frac{1}{2}$ $6 \frac{1}{2} kg$ 4 $14 + 5 x \frac{1}{2} = 16 \frac{1}{2}$ $16 \frac{1}{2} kg$ 4 kg at B & 14 kg at C gives a load of $2\frac{1}{2} kg$ Or $14 kg at B & 4 kg at C gives a load of 2\frac{1}{2} kgA lower centre of gravity is best to stop the case falling over.Hence the second of the two examples in part (c).OR a justified alternative reason.$	1	$14 + 5 x \frac{1}{2} = 16 \frac{1}{2}$	16 ½ kg
3 $4 + 5 x \frac{1}{2} = 6 \frac{1}{2}$ $6 \frac{1}{2} kg$ 4 $14 + 5 x \frac{1}{2} = 16 \frac{1}{2}$ $16 \frac{1}{2} kg$ 4 kg at B & 14 kg at C gives a load of $2\frac{1}{2} kg$ Or $14 kg at B & 4 kg at C gives a load of 2\frac{1}{2} kgA lower centre of gravity is best to stop the case falling over.Hence the second of the two examples in part (c).OR a justified alternative reason.$	2	$4 + 5 \times \frac{1}{2} = 6 \frac{1}{2}$	6 ½ kg
4 $14 + 5 \times \frac{1}{2} = 16 \frac{1}{2}$ $16 \frac{1}{2} \text{ kg}$ 4kg at B & 14 kg at C gives a load of $2\frac{1}{2}$ kgOr14 kg at B & 4 kg at C gives a load of $2\frac{1}{2}$ kgA lower centre of gravity is best to stop the case falling over.Hence the second of the two examples in part (c).OR a justified alternative reason.	3	$4 + 5 \times \frac{1}{2} = 6 \frac{1}{2}$	6 ½ kg
4 kg at B & 14 kg at C gives a load of 2½ kg Or 14 kg at B & 4 kg at C gives a load of 2½ kg A lower centre of gravity is best to stop the case falling over. Hence the second of the two examples in part (c). OR a justified alternative reason.	4	$14 + 5 \times \frac{1}{2} = 16 \frac{1}{2}$	16 ½ kg
5	Or 14 A lower of Hence the OR a just	4 kg at B & 4 kg at C gives a lo	ad of $2\frac{1}{2}$ kg the case falling over.

[Q3: 8 marks]

Question 4

(a) $2 \ge 2 = 4$				\checkmark	[1]
(b) Beginning of	1935 1936 1937 1938 1939 1940	$ \begin{array}{c} 1 \ cm \\ 4 \ cm \\ 4^2 \\ 4^3 \\ 4^4 \\ 4^5 \ cm \end{array} $	answer;	V	[1]
			clear working – table/calculation;	✓	[2]
(c) 1×10^3 cm or 1	x 10 ¹ n	n		√	[1]
(d) Beginning of	1941 1942 1943	40 m 160 m 640 m	= 4 x 10 m = 4^2 x 10 m = 4^3 x 10 m		[2]

(e) After n years beginning in 1941 the volume thickness will be $4^n \times 10 \text{ m}$

The velocity of the front page will be $4^n \ge 10 \div 6$ months \checkmark

Year when this is equal to the speed of light is when

$$3 \times 10^{8} = \frac{4^{n} \times 10}{364 \times 3600 \times 24 / 2}$$

$$4.73 \times 10^{14} = 4^{n}$$
Taking logs to base 10
$$14.67 = n \log 4$$

$$n = 24.4$$
So the year will be 1964
$$\checkmark$$

[4]

[Q4: 10 marks]

Question 5

(a)	$[E] = \text{kg m s}^{-2} \text{ m}^{-2} = \text{kg m}^{-1} \text{ s}^{-2}$	\checkmark	
	$[\rho] = \text{kg m}^{-3}$	\checkmark	
	$[g] = m s^{-2}$	\checkmark	[3]
(b)	Units $m = kg m^{-1} s^{-2} x (kg m^{-3})^{\alpha} x (m s^{-2})^{\beta}$	✓	L- J
	$m = m^{-1} x m^{-3\alpha} x m^{\beta} \qquad \beta = 2 + 3\alpha$		
	$(kg)^0 = kg x (kg)^{\alpha}$ $\alpha = -1$		
	$s^0 = s^{-2} x s^{-2\beta}$ $\beta = -1$		
	only two equations needed to solve for α and β one mark each for a correct equation	$\checkmark\checkmark$	
	$h = \text{constant } \mathbf{x} \frac{E}{\rho q}$	\checkmark	
	(α and β are not specifically required – correct result will su	ffice)	[4]
(c)	$h = 1 \ge \frac{10^{10}}{3 \ge 10^3 \ge 10}$	\checkmark	
	= 3.3×10^5 metres ≈ 300 km	✓	[2]

[Q5: 9 marks]

Question 6

(a)	No heater $\frac{\Delta r}{\Delta}$	$\frac{dm}{dt} = 0.$	330 g s ⁻¹			\checkmark	
	With heater $\frac{\Delta r}{\Delta t}$	$\frac{m}{\Delta t} = 0.2$	350 g s ⁻¹			\checkmark	
	Must be a	clear i	indication of which	is which	and units needed.		[2]
(b)	Electrical power =	= V x 1 = 4.68	′ = 3.9 x 1.2 = 4.7 W			\checkmark	
							[1]
(c)	4.68 J/s boils awa So 234 J needed to	ay 0.02 to boil	.0 g/s awav 1 g		owtte	\checkmark	
							[2]
(d)	234 J/g x 0.330 g/	;/s 77 W				√ √	
(a)	- /	tragan	- • V			·	[2]
(e)	mass of fiquid fit.	uogen	$= \rho v$ = 810 $\frac{\text{kg}}{3} \times \frac{25}{1000}$	litres	2		
			$m^3 = 1000$	litres m	l ⁻⁵	\checkmark	
	Heat Energy requi	uired	= 20.3 kg = 20.3 (kg) x 100	0 (g/kg) :	x 234 (J/g)	\checkmark	
			$= 4.7(5) \times 10^6 \text{ J}$	00		\checkmark	
	Power input to De	ewar	$=\frac{4.75 \times 10^6}{100 \times 24 \times 3600}$	_)	100 days in seconds	\checkmark	
			= 0.55 W			\checkmark	
							[5]
					[Q5: 12	marks]

*owtte (Or Words To That Effect)

BPhO 2012 - A2 CHALLENGE

MERIT AND PARTICIPATION CERTIFICATES

Students who obtain 20 or more marks in this paper are entitled to receive a merit certificate.

NO. OF MERIT CERTIFICATE	S REQUESTED
--------------------------	-------------

NO. OF PARTICIPATION CERTIFICATES REQUESTED

NAME OF TEACHER

EMAIL.....

NAME OF SCHOOL

ADDRESS OF SCHOOL

.....

.....

..... Post code

Requests for certificates should be sent to:

British Physics Olympiad Administrator Clarendon Laboratory University of Oxford Parks Road Oxford OX1 3PU

Certificates can also be ordered online through the BPhO Online store: <u>www.bpho.org.uk</u>. The certificates are free and no credit card details are required.