Physics Olympiad Competition 2012 Paper 1: Solutions

Mark Scheme

To order free participation or merit certificates (for scores over 20), see www.bpho.org.uk Allow error carried forward where this gives sensible answers

Question 1

(a) $17 \times 3.7 \times 10^{10}=6.3 \times 10^{11}$ decays per second
(b) $6.3 \times 10^{11} \times 5.5 \times 10^{6} \times 1.6 \times 10^{-19}=0.55 \mathrm{~W}$ per g Mark lost for incorrect order of magnitude
(c) Mass required $=4,500 \div 0.55=8,100 \mathrm{~g}=8.1 \mathrm{~kg}$
(d) $4,500 \mathrm{~W} \times 0.07=315 \mathrm{~W}$
(e) Satellites far from the sun receive too little power / area of panels would need to be too great / intensity of solar radiation is too low owte*
[Q1: 6 marks]

Question 2

Various approaches:
(a)

$$
\begin{aligned}
& g \alpha \frac{1}{\mathrm{r}^{2}} \text { therefore } \mathrm{g} \mathrm{r}^{2}=\text { constant } \\
& \begin{aligned}
6,400^{2} \times 9.81=6,700^{2} \mathrm{xg}^{\prime} & \text { mark for use of } 6,700 \text { value }
\end{aligned} \\
& \begin{aligned}
\mathrm{g}^{\prime} & =\left(\frac{6,400}{6,700}\right)^{2} \times 9.81 \\
& \text { mark for }\left(\frac{6,400}{6,700}\right)^{2} \text { term }
\end{aligned} \\
& \text { Reduced by } 8.8 \%
\end{aligned}
$$

(b) $\quad g^{\prime}=\left(\frac{6,400}{406,400}\right)^{2} \times 9.81 \quad 400,000$ acceptable

$$
=(2.4-2.5) \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2}=2.4-2.5 \mathrm{~mm} \mathrm{~s}^{-2}
$$

Question 3

(a)

Owte*
OR centre of suitcase indicated
(b)

Example	Workings out	Load at handle
$\mathbf{1}$	$14+5 \times 1 / 2=16^{1 / 2}$	$16^{1 / 2} \mathrm{~kg}$
$\mathbf{2}$	$4+5 \times^{1 / 2}=611 / 2$	$61 / 2 \mathrm{~kg}$
$\mathbf{3}$	$4+5 \times^{1 / 2}=61 / 2$	$61 / 2 \mathrm{~kg}$
$\mathbf{4}$	$14+5 \times^{1 / 2}=16^{1 / 2}$	$16^{1 / 2} \mathrm{~kg}$

[4]
(c) $\quad 4 \mathrm{~kg}$ at B \& 14 kg at C gives a load of $2 \frac{1}{2} \mathrm{~kg}$

Or $\quad 14 \mathrm{~kg}$ at $\mathrm{B} \& 4 \mathrm{~kg}$ at C gives a load of $21 / 2 \mathrm{~kg}$
(d) A lower centre of gravity is best to stop the case falling over.

Hence the second of the two examples in part (c).
OR a justified alternative reason.
[Q3: 8 marks]

Question 4

(a) $2 \times 2=4$
(b) Beginning of 19351 cm

19364 cm
19374^{2}
19384^{3}
19394^{4}
$\begin{array}{llc}1940 & 4^{5} \mathrm{~cm} & \text { answer; } \\ & & \text { clear working - table/calculation; }\end{array} \begin{aligned} & \checkmark \\ & \end{aligned}$
(c) $1 \times 10^{3} \mathrm{~cm}$ or $1 \times 10^{1} \mathrm{~m}$
(d) Beginning of $1941 \quad 40 \mathrm{~m}=4 \times 10 \mathrm{~m}$
$1942 \quad 160 \mathrm{~m}=4^{2} \times 10 \mathrm{~m}$
$1943640 \mathrm{~m}=4^{3} \times 10 \mathrm{~m}$
(e) After n years beginning in 1941 the volume thickness will be $4^{\mathrm{n}} \times 10 \mathrm{~m}$

The velocity of the front page will be $4^{\mathrm{n}} \times 10 \div 6$ months

Year when this is equal to the speed of light is when

$$
\begin{aligned}
& 3 \times 10^{8}=\frac{4^{\mathrm{n}} \times 10}{364 \times 3600 \times 24 / 2} \\
& 4.73 \times 10^{14}=4^{\mathrm{n}}
\end{aligned}
$$

Taking logs to base 10

$$
\begin{aligned}
14.67 & =n \log 4 \\
\mathrm{n} & =24.4
\end{aligned}
$$

So the year will be 1964

Question 5

(a) $[E]=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}^{-2}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$

$$
\begin{align*}
& {[\rho]=\mathrm{kg} \mathrm{~m}^{-3}} \\
& {[g]=\mathrm{m} \mathrm{~s}^{-2}} \tag{3}
\end{align*}
$$

(b) Units $\mathrm{m}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2} \mathrm{x}\left(\mathrm{kg} \mathrm{m}^{-3}\right)^{\alpha} \mathrm{x}\left(\mathrm{m} \mathrm{s}^{-2}\right)^{\beta}$

$$
\begin{aligned}
& \mathrm{m}=\mathrm{m}^{-1} \mathrm{x} \mathrm{~m}^{-3 \alpha} \mathrm{x} \mathrm{~m}^{\beta} \quad \beta=2+3 \alpha \\
& (\mathrm{~kg})^{0}=\operatorname{kg~x}(\mathrm{kg})^{\alpha} \quad \alpha=-1 \\
& s^{0}=\mathrm{s}^{-2} \mathrm{x} \mathrm{~s}^{-2 \beta} \quad \beta=-1 \\
& \text { only two equations needed to solve for } \alpha \text { and } \beta \\
& \text { one mark each for a correct equation } \\
& h=\text { constant } \mathrm{x} \frac{E}{\rho g} \\
& \text { (} \alpha \text { and } \beta \text { are not specifically required - correct result will suffice) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
h & =1 \times \frac{10^{10}}{3 \times 10^{3} \times 10} \\
& =3.3 \times 10^{5} \mathrm{metres} \approx 300 \mathrm{~km}
\end{aligned}
$$

Question 6

(a) No heater $\frac{\Delta \mathrm{m}}{\Delta \mathrm{t}}=0.330 \mathrm{~g} \mathrm{~s}^{-1}$

With heater $\quad \frac{\Delta \mathrm{m}}{\Delta \mathrm{t}}=0.350 \mathrm{~g} \mathrm{~s}^{-1}$
Must be a clear indication of which is which and units needed.
(b) \quad Electrical power $=V \times I=3.9 \times 1.2$

$$
\begin{equation*}
=4.68=4.7 \mathrm{~W} \tag{2}
\end{equation*}
$$

(c) $\quad 4.68 \mathrm{~J} / \mathrm{s}$ boils away $0.020 \mathrm{~g} / \mathrm{s}$
owtte
\checkmark
(d) $234 \mathrm{~J} / \mathrm{g} \mathrm{x} 0.330 \mathrm{~g} / \mathrm{s}$

$$
=77 \mathrm{~W}
$$

(e) Mass of liquid nitrogen $=\rho \mathrm{V}$

$$
\begin{aligned}
& =810 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{25}{1000} \frac{\text { litres }}{\text { litres } \mathrm{m}^{-3}} \\
& =20.3 \mathrm{~kg} \\
\text { Heat Energy required } & =20.3(\mathrm{~kg}) \times 1000(\mathrm{~g} / \mathrm{kg}) \times 234(\mathrm{~J} / \mathrm{g}) \\
& =4.7(5) \times 10^{6} \mathrm{~J} \\
\text { Power input to Dewar } & =\frac{4.75 \times 10^{6}}{100 \times 24 \times 3600} \quad 100 \text { days in seconds } \\
& =0.55 \mathrm{~W}
\end{aligned}
$$

[Q5: 12 marks]

[^0]
BPhO 2012 - A2 CHALLENGE

MERIT AND PARTICIPATION CERTIFICATES

Students who obtain 20 or more marks in this paper are entitled to receive a merit certificate.

NO. OF MERIT CERTIFICATES REQUESTED

NO. OF PARTICIPATION CERTIFICATES REQUESTED

NAME OF TEACHER \qquad

EMAIL \qquad

NAME OF SCHOOL \qquad

ADDRESS OF SCHOOL

\qquad
\qquad
\qquad
Post code

Requests for certificates should be sent to:
British Physics Olympiad Administrator Clarendon Laboratory
University of Oxford Parks Road Oxford OX1 3PU

Certificates can also be ordered online through the BPhO Online store: www.bpho.org.uk. The certificates are free and no credit card details are required.

[^0]: * owtte (Or Words To That Effect)

